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This paper introduces a game-theoretic analysis of auction settings where bidders’ private 
values depend on an uncertain common value, and the auctioneer has the option to 
purchase information that can eliminate that uncertainty. Therefore the auctioneer needs 
to decide whether to purchase the information, and if so, whether to disclose it to the 
bidders. Unlike prior work, the model assumes that bidders are aware of the auctioneer’s 
option to purchase the external information but are not necessarily aware of her decision. 
The modeling of the problem as a Stackelberg game, where the auctioneer is the leader, 
is complicated by the fact that in cases where the auctioneer decides not to disclose the 
information, the situation is actually modeled as a version of Stackelberg game where the 
follower has potentially imperfect information about the leader’s actions. Our analysis of 
the individual expected-benefit-maximizing strategies results in the characterization of the 
pure-strategy perfect Bayesian Nash equilibrium and proof of its existence for any setting. 
In addition, we introduce an algorithm for extracting the equilibrium as a function of the 
information cost, which is of great importance when the information is provided by a 
strategic information-provider. The analysis is also extended to deal with mixed-strategy 
perfect Bayesian Nash equilibrium and with noisy information. Overall, the analysis enables 
the demonstration of various model characteristics, including many non-intuitive properties 
related to the benefits of competition, the benefits in having the option of the auctioneer 
to purchase such information and the benefits encapsulated in the bidders’ awareness of 
such an option.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recent advances in information technologies support the emergence of dynamic pricing mechanisms as the successors 
of fixed pricing in electronic marketplaces. The success of dynamic pricing mechanisms is based on their premise to im-
prove benefit and resource utilization. One important dynamic pricing mechanism, where price emerges from the buyers’ 
(e.g., bidders’) willingness to pay, is auctions. Over the past two decades, auctions have become an integral part of electronic 
commerce, a popular method for transacting business, and a promising field for applying agent and Artificial Intelligence 
technologies [30,65,37,59,56].

The key aspect that affects bidding in an auction is the way the bidders value the auctioned item. In this paper we 
consider an auction model where the auctioned item is characterized by an uncertain common value, on which bidders’ 

✩ Preliminary results of this work appeared in Proceedings of the 2012 IEEE/WIC/ACM International Conference on Intelligent Agent Technology.

* Corresponding author.
http://dx.doi.org/10.1016/j.artint.2014.05.008
0004-3702/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.artint.2014.05.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://dx.doi.org/10.1016/j.artint.2014.05.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2014.05.008&domain=pdf


D. Sarne et al. / Artificial Intelligence 215 (2014) 24–54 25
private values are based [34,22,23,40]. For example, consider an auction for the lease of an advertising space in a shopping 
mall. Here, the common value associated with the advertising space is the foot traffic (e.g., number of shoppers that visit the 
shopping mall in a certain period of time). Each bidder’s (i.e., potential advertiser) valuation of her expected benefit from 
leasing the advertising space depends on the foot traffic. Moreover, since each bidder has a different benefit from having 
a single shopper see its ad, different bidders will have different valuations for different values of the foot traffic. Another 
example is the classic oil drilling case [34]. Here, the amount of oil and the depth of its location under the ground are the 
uncertain common values. However, each bidder’s valuation of the benefit from owning the drilling rights depends on the 
stratum to which she needs to drill, as each bidder can have different equipment and drilling technology. Similar arguments 
favoring this hybrid-value model can be suggested for other classic auction domains, e.g., the U.S. Federal Communications 
Commission (FCC) [11]. Even the classic painting example that is often used in the context of private value can be considered 
as an example for the hybrid model due to the resell factor [22].

One key question in models assuming an uncertain common value concerns the disclosure of information that may elim-
inate some of the uncertainty associated with the common value, whenever such information is available to the auctioneer. 
Unlike prior work that considered models combining private and common value aspects [22,23,9,40], bidders in our model 
are not limited to an additive combination of the two, and the effect of the common value on all bidders’ valuation is 
not necessarily positively correlated. One important implication of this difference is that, in contrast to results obtained in 
prior work [51], the preferred choice for the auctioneer is not necessarily to always disclose the common value. Instead, the 
auctioneer needs to selectively disclose the information regarding the common value, based on her beliefs regarding the 
bids that will be received for any value disclosed and whenever not disclosing any value.

In many real-life situations the auctioneer does not initially possess the information, but rather needs to pay in order to 
obtain it (either in the form of resources it needs to spend in order to produce it “internally” or in the form of purchasing it 
from an external information-provider). Taking the examples above, information concerning shoppers’ traffic can be obtained 
either by placing mall employees next to the offered space in order to measure the bypassing traffic, by analyzing data 
collected from the security cameras, by executing a statistical analysis based on the number of people visiting the shopping 
mall or by hiring an expert that can produce such an estimate using her own methods. In the oil drilling example the 
auctioneer can execute an exploratory drill or alternatively pay a specialist for a thorough survey of the field. Our model 
applies to this case by enabling the option of purchasing information that fully eliminates the uncertainty associated with 
the common value of the auctioned item. This option is available only to the auctioneer. Bidders in our model have no 
such option of purchasing the information (for various realistic reasons, e.g., if the production of the information requires 
access to some data that only the auctioneer has) however become acquainted with the true common value if the auctioneer 
purchases the information and chooses to disclose the value received. In such a setting, a substantial part of the auctioneer’s 
strategy is deciding whether or not to obtain the external information, and, if so, once obtained, whether or not to disclose 
it to the bidders. The problem can thus be modeled as a Stackelberg game where the auctioneer is the leader and the 
followers are the bidders. This modeling is complicated by the fact that in cases where the auctioneer decides not to 
disclose the information, the situation is actually modeled as a version of a Stackelberg game where the followers have 
potentially imperfect information about the leader’s actions.

The contributions of this paper are threefold: First, the paper formally presents and analyzes an auction model where: 
(a) bidders’ valuations depend on an uncertain common value in a general way; (b) the auctioneer can eliminate the uncer-
tainty associated with the common value through the purchase of information; and (c) bidders are aware of the availability 
of such an option to the auctioneer. To the best of our knowledge, a model of this type has not been investigated to date. 
In particular, the incorporation of costly information and bidders’ awareness results in several complexities both from the 
strategy space and the analysis points of view. The analysis given essentially derives from the individual benefit-maximizing 
strategies of the auctioneer (given the bidders’ belief regarding whether or not the auctioneer is planning to purchase the 
information and which values she will disclose) and the bidders (given the auctioneer’s decision of whether to purchase 
the information and which values she is planning to disclose). This leads to the characterization of stable solutions and a 
perfect Bayesian Nash equilibrium. As part of the analysis we characterize the influence of the cost of obtaining the in-
formation over the equilibrium and the resulting expected benefit of the different players, proving, among other things, 
that an equilibrium always exists. The analysis leads to an algorithm for calculating the pure-strategy equilibrium for all 
different possible costs of purchasing the information, which is of much importance for the auctioneer and the social plan-
ner. The analysis encompasses various other aspects of the model, such as the expected-benefit-maximizing strategy for a 
self-interested information-provider and the effect of bidders’ homogeneity over the results.

Second, using the equilibrium analysis, we manage to illustrate various properties of the model. The nature of these re-
sults is primarily existential (i.e., showing the existence of said solution), and many of them are somehow counter-intuitive. 
For example, it is demonstrated that, in conflict with classic auction theory, the auctioneer will not necessarily find it ben-
eficial to have more bidders participate in the auction and similarly bidders will not necessarily prefer less competition. 
Also, bidders’ unawareness of the auctioneer’s option to purchase the information does not necessarily play into the hands 
of the auctioneer and, similarly, bidders may sometimes benefit from not knowing that the auctioneer has the option to 
purchase such information. Furthermore, having the option to purchase the information can be devastating for the auction-
eer in some settings, even though she gets to decide whether or not to purchase the information and what portions of it 
to disclose to the bidders. Similarly, the auctioneer may prefer that the information be offered at a high rather than a low 
price (and in many cases would even prefer costly information over the option to obtain it for free). Common to all the 
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above results is that they are obtained in situations where, despite switching to what might seem to be a more favorable 
setting, the solution one would expect to hold in the new setting is found to be unstable and the equilibrium with which 
the system eventually ends up is worse (in terms of the expected benefit to the different players) than the one held in the 
less favorable setting.

Finally, the paper shows that in our unique setting, it might be beneficial for the auctioneer to pay the external 
information-provider in order to change the price she sets for the information. This can either have the form of making 
the information-provider leave the market (or alternatively publicly increase the price of the information she offers) or 
making the information-provider announce a decrease in the information price. Similarly, we demonstrate how a social 
planner can improve social welfare in our model through subsidy and taxation. The taxation aims either to discourage the 
auctioneer from purchasing the information or drive the system towards a more beneficial equilibrium, whereas the subsidy 
enables setting a price in which the information is indeed purchased (in cases where it is not purchased otherwise).

The remainder of the paper is organized as follows: In Section 2 we describe the model in detail. The pure-strategy 
perfect Bayesian Nash equilibrium analysis as well as a procedure for its efficient calculation as a function of the information 
pricing are given in Section 3. Section 4 extends the analysis to the case where players can use mixed strategies. In Section 5
we illustrate specific properties of the model using synthetic settings. In Section 6 we survey related work, and finally we 
conclude and outline directions for future work in Section 7.

2. The model

The model assumes a setting where a single auctioneer offers a single item for sale in a second-price sealed-bid auction 
(with a random winner selection among highest bids in case of a tie) to n heterogeneous bidders that are interested in 
the said item.1 Both the auctioneer and the bidders are assumed to be risk-neutral and fully rational. As is common in 
auction literature, the auctioned item is assumed to have a characteristic X whose value, x, is a priori unknown both to the 
auctioneer and the bidders [22,23]. The only information publicly available with regard to X is the set of possible values 
it can obtain, denoted X∗ = {v1, ..., vk}, and the probability associated with each value, Pr(X = x) (

∑
x∈X∗ Pr(X = x) = 1). 

In case X obtains values from a set of continuous intervals, we use the probability distribution function fx(x) instead of 
Pr(X = x).

Each bidder is assumed to be characterized by a type T , where the set of possible types it can obtain is T ∗ . Bidders’ types 
are assumed to be independent and identically distributed, such that the a priori probability of any of the bidders being 
of type T = t is given by Pr(T = t) [22,23]. For the case where types are continuous we use the probability distribution 
function ft(t) instead of Pr(T = t). A bidder’s type defines her valuation of the proposed item (i.e., her “private value”) 
for any possible value that X may obtain. We use the function Vt(x) to denote the value bidders of type T = t see in the 
auctioned item in the case where the characteristic X obtains a value x. The value of X can thus be seen as a common value 
in this context, and the function Vt(x) defines the way that the private value of bidders of type t is affected by it. Unlike 
prior work that commonly assumed some correlation between the ways that different bidders’ valuations are set given the 
common value (e.g., linear or symmetric dependency on the common value or a symmetric function of the other bidders’ 
signals [23,40]), the model in this paper does not imply any restriction on the function Vt (x). Each bidder is assumed to 
know its own type, but not the type of the other bidders that take part in the auction. Similarly, the auctioneer is assumed 
to be unfamiliar with the specific types of the bidders that take part in the auction.

The model assumes that the auctioneer can disambiguate the common value, i.e., obtain the actual value of X , upon 
payment of a fee C (e.g., by consuming some of her resources in order to obtain it or by purchasing it from an external 
information-provider) prior to starting the auction. We refer to this as “obtaining information”. If the auctioneer so chooses, 
the true value x of X becomes available only to her, and she can either disclose it truthfully to all bidders symmetrically, 
prior to bidding, or keep it to herself. These latter assumptions (truthful and symmetric information disclosure) are common 
in settings where the auctioneer is regulated or has to consider her reputation, and would not want to lose out on future 
benefits associated with her privileged knowledge. We assume that bidders cannot independently obtain the value of X (not 
even for a fee), and the only way that they can become aware of the true common value, before placing their bids, is if 
the auctioneer obtains and discloses it. The realism for such an assumption may be the fact that the information-provider’s 
services might require direct access to the auctioned item or some private information that cannot be accessed without 
the auctioneer’s permission and cooperation.2 For example, in the case of auctioning oil and gas mineral rights, only the 
auctioneer can execute an exploratory drill, as bidders do not have the right to drill in that area.

The model distinguishes between cases where the bidders are aware of the auctioneer’s option to purchase the additional 
information and when they are not. This issue is fundamental whenever no information is disclosed to bidders. In the case 
where bidders are unaware, the auctioneer’s problem becomes an optimization problem as the bidders’ bids, whenever no 
information is being disclosed, will not change based on the auctioneer’s strategy. In the case where bidders are aware, 
they will act strategically, attempting to distinguish between not receiving the information because the auctioneer inten-
tionally did not purchase the information in the first place, and not receiving because despite purchasing the information 

1 The use of the second-price auction protocol is due to the fact that it is a very natural, well-known and wide-spread scheme for selling an item [42]. 
Also, this is the protocol used in most prior literature that deals with selective disclosure of information (e.g., [17,42,14]).

2 The challenges of analyzing the setting where bidders may independently obtain the value are discussed in Section 7.
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the auctioneer decided not to disclose the specific value obtained. A setting where bidders are unaware of whether the 
auctioneer can purchase the additional information is common whenever the extraction of the true value requires further 
complementary information whose availability to the auctioneer is unknown to the bidders. A setting where bidders are 
aware of the auctioneer’s option is common whenever the information is supplied by an external information-provider, 
whose existence and the price she charges for such information are publicly known.

Both the auctioneer and the bidders are assumed to be self-interested and attempt to maximize their own expected 
benefit. The auctioneer’s expected benefit is defined as the expected benefit from the auction (i.e., the expected second best 
bid) minus, if choosing to obtain the information, the payment C . A bidder’s benefit is her valuation of the item minus her 
payment to the auctioneer (which is the second highest bid) if she wins the auction and zero otherwise. The model also 
distinguishes between the case where the external information-provider is a self-interested strategic player that sets the 
cost of her service, C , in a way that maximizes her benefit and the case where the value of C is exogenously set (e.g., when 
the information extraction requires some costly exploration or internal data gathering, or when the information-provider 
uses a fixed price that applies to any customer and is set based on various external considerations).

Finally, the model also assumes the existence of a social planner (e.g., a government or a market/platform owner). 
The social planner aims to maximize the “social welfare”, defined as the sum of the expected benefits of all participants 
(auctioneer and bidders). Consequently, she can decide to tax or subsidize the purchase of information if this will result 
in an increase in the social welfare. While taxes can later be re-distributed, we take a strict approach and do not add the 
social-planner’s proceeds from the tax to the social-welfare calculations (however the tax is subtracted from the auctioneer’s 
expected benefit, if the information is indeed purchased). The subsidy (paid to the information-provider), however, is always 
subtracted from the overall social welfare whenever used.

All players (auctioneer, bidders, information-provider and social planner) are assumed to be acquainted with the general 
setting parameters: the number of bidders in the auction, n, the cost of purchasing the information, C , the discrete random 
variables, X and T , their possible values and their discrete probability distributions (or the probability distribution functions 
when values are continuous).

3. Analysis

We begin by analyzing the bidders’ and the auctioneer’s individual expected-benefit-maximizing strategies, given the 
strategies of the other players. Based on these we provide a comprehensive analysis of the pure-strategy perfect Bayesian 
Nash equilibrium, which, as detailed in the following section, can be extended to deal with the mixed-strategy perfect 
Bayesian Nash equilibrium in a rather straightforward manner. For exposition purposes the section presents the analysis for 
the discrete case. The appropriate adjustments required for the continuous case are given in Appendix A.

3.1. Bidders’ side

A bidder’s strategy defines its bid given the information disclosed by the auctioneer (or its absence), i.e., the mapping 
B(t, x) →R, where t is the bidder’s type and x is the information disclosed (x ∈ X∗ or x = ∅). We use Rbidder ⊆ X∗ to denote 
the set of values that the bidder believes the auctioneer will disclose if purchasing the external information. Since the auc-
tioneer is known to be self-interested, the case Rbidder = ∅ necessarily represents the bidder’s belief that the auctioneer does 
not obtain the information in the first place (as not purchasing the information dominates purchasing without disclosing). 
Since bidders are fully rational and their information regarding the value-distribution of X is identical, they all use the same 
set Rbidder in equilibrium.

Since this is a second-price sealed-bid auction, the bidders’ dominating (expected-benefit-maximizing) bids can be cal-
culated according to the following two cases:

• The auctioneer discloses the value x of X – the dominating strategy for each bidder is to bid her private value (which 
is equivalent to truth telling [60]). Therefore the bid B(t, x) of a bidder of type t in this case is:

B(t, x) = Vt(x) (1)

It is notable that the bidder’s bid in this case is affected only by the value x disclosed by the auctioneer and is not 
affected by the bidder’s belief, Rbidder , whatsoever. This is because even if the auctioneer discloses a value which the 
bidder was not expecting to be disclosed (i.e., x /∈ Rbidder), this value “overrides” the set Rbidder once it is disclosed, 
making Rbidder irrelevant. The value x dictates the private value of the bidders, therefore whenever the true value is 
disclosed, the problem maps to a standard second-price sealed bid auction, where every bidder knows her exact private 
value.

• The auctioneer does not disclose any value – the dominating strategy for each bidder is to bid her expected private 
value, given that x /∈ Rbidder [17]. Therefore the bid B(t, ∅) of a bidder of type t in this case is:

B(t,∅) =
∑

bidder

Vt(x) · Pr∗(X = x) (2)

x/∈R
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where Pr∗(X = x) is the posterior probability, given that x /∈ Rbidder . Namely, the probability of having x be the true 
common value will now be calculated as:

Pr∗(X = x) =
⎧⎨
⎩

0 if x ∈ Rbidder

Pr(X=x)∑
y /∈Rbidder Pr(X=y)

if x /∈ Rbidder (3)

Therefore, bidders’ dominating (or “best response”) strategies can be compactly represented by the set Rbidder , such 
that for any disclosed value x they bid B(t, x) = Vt(x), and when no value is disclosed they bid B(t, ∅) according to (2)
where Pr∗(X = x) is calculated according to (3). From this point on we thus use Rbidder both as a belief and a strategy 
interchangeably.

One exception for the above is when the bidder believes that the auctioneer purchases the information and reveals any 
value obtained (i.e., Rbidder = X∗). In this case, if the auctioneer does not eventually disclose a value Eq. (3) does not hold. 
In this case, which, as we show in the equilibrium analysis that follows and discuss in more detail, is off the equilibrium 
path, the bidders will bid according to the common value that minimizes the auctioneer’s expected benefit.

The expected benefit of a bidder of type t from participating in the auction, when bidders believe the auctioneer uses 
Rbidder and the auctioneer discloses the set Rauc , denoted ubidder(t), is a composition of 4 possible cases:

• In case the value disclosed is x ∈ Rauc and the bidder wins by exclusively placing the highest bid, her expected benefit 
is: 

∑
B(t′,x)<B(t,x)

∑n−1
k=1

(n−1
k

)
(Pr(T = t′))k(

∑
B(t′′,x)<B(t′,x) Pr(T = t′′))n−k−1(Vt(x) − B(t′, x)). The calculation iterates over 

all of the different values that the second best bid may obtain (i.e., all bids B(t′, x) placed by an agent of type t′ �= t , 
such that B(t′, x) < B(t, x)) and weighs the difference between the agent’s valuation of the item and the second best bid, 
Vt(x) − B(t′, x), according to the probability that the second best bid is indeed B(t′, x). The probability that the second 
best bid is B(t′, x) is given by 

∑n−1
k=1

(n−1
k

)
(Pr(T = t′))k(

∑
B(t′′,x)<B(t′,x) Pr(T = t′′))n−k−1 as it requires having k ≥ 1 agents 

of type t′ and all of the remaining n − k − 1 agents to be of types that bid less than B(t′, x) (thus considering all types 
t′′ such that B(t′′, x) < B(t′, x)).
We note that here and in the following three cases, if other types assign a similar private value to a specific common 
value x as type t does (i.e., whenever Vt(x) = Vt′ (x) for two types, t and t′ , such that t �= t′ for some value x), these 
types should be united (i.e., their type probabilities should be summed) in the calculation related to the disclosure of 
that specific value. This applies also for the calculation related to values that are not disclosed (i.e., combining types 
that assign a similar value to x = ∅).

• In case the value disclosed is x ∈ Rauc and the bidder wins by placing a bid equal to the highest bid placed by any of 
the other bidders, her expected benefit is: 

∑n−1
k=1

(n−1
k

) 1
k+1 (Pr(T = t))k(

∑
B(t′,x)<B(t,x) Pr(T = t′))n−k−1(Vt(x) − B(t, x)). In 

this case the value of the second best bid is necessarily B(t, x) (which equals Vt(x) according to (1)). The probability of 
having k additional bidders with the same bid as the agent’s bid is 

(n−1
k

)
(Pr(T = t))k and in order for this bid to be the 

winning bid all of the remaining agents must bid below this, i.e., with a probability of (
∑

B(t′,x)<B(t,x) Pr(T = t′))n−k−1. 
The probability that the agent will be the winner in this case is 1/(k + 1) as the winner is chosen randomly from the 
winning bids if there is a tie.
We note that the difference Vt(x) − B(t, x) in this case is in fact zero. Nonetheless, we have not omitted this case from 
the formulations given, for completeness. Another important reason for keeping this term is that once it is incorporated 
into the ubidder(t) calculation (see (4) below), the expression can be easily divided into the expected value of the item 
when winning (i.e., excluding the payment of the second-best bid) and the expected payment (i.e., the second-best 
bid when winning) for an agent of type t . The two parts are represented in the four subtractions made, where the 
subtracted parts are the second-best bid, and the terms from which the subtraction is made are the bidder’s expected 
valuation of the item.

• In case no value is disclosed, and the bidder wins by exclusively placing the highest bid, her expected benefit is: ∑
B(t′,∅)<B(t,∅)

∑n−1
k=1

(n−1
k

)
(Pr(T = t′))k(

∑
B(t′′,∅)<B(t′,∅) Pr(T = t′′))n−k−1 · (∑

y /∈Rauc Vt (y)Pr(X=y)∑
y /∈Rauc Pr(X=y)

− B(t′, ∅)
)
. The principles 

of the calculation in this case are similar to those used when information is disclosed, while replacing B(t, x), B(t′, x)

and B(t′′, x) with B(t, ∅), B(t′, ∅) and B(t′′, ∅), respectively. The expression 
∑

y /∈Rauc Vt (y)Pr(X=y)∑
y /∈Rauc Pr(X=y)

is the expected private 

value of an agent of type t when a value is not disclosed (obtained by substituting (3) in (2)).
• In case no value is disclosed and the bidder wins by placing a bid equal to the highest bid placed by any of the 

other bidders, her expected benefit is: 
∑n−1

k=1

(n−1
k

) 1
k+1 (Pr(T = t))k(

∑
B(t′,∅)<B(t,∅) Pr(T = t′))n−k−1 · (∑

y /∈Rauc Vt (y)Pr(X=y)∑
y /∈Rauc Pr(X=y)

−
B(t, ∅)

)
. The principles of the calculation in this case are similar to those used when information is disclosed, 

while replacing B(t, x) and B(t′, x) with B(t, ∅) and B(t′, ∅), respectively. Also, when Rauc = Rbidder , the difference ∑
y /∈Rauc Vt (y)Pr(X=y)∑

y /∈Rauc Pr(X=y)
− B(t, ∅) is zero. The choice of including this term in the calculation of ubidder(t) when Rauc = Rbidder

is justified by the same considerations given in the second case above.
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Based on these four cases we can calculate the expected benefit of bidders of type t , weighing the expected benefit for 
each value that X may obtain according to its occurrence probability:

ubidder(t) =
∑

x∈Rauc

Pr(X = x)

( ∑
B(t′,x)<B(t,x)

n−1∑
k=1

(
n − 1

k

)(
Pr

(
T = t′))k

( ∑
B(t′′,x)<B(t′,x)

Pr
(
T = t′′))n−k−1(

Vt(x) − B
(
t′, x

))

+
n−1∑
k=1

(
n − 1

k

)
1

k + 1

(
Pr(T = t)

)k
( ∑

B(t′,x)<B(t,x)

Pr
(
T = t′))n−k−1(

Vt(x) − B(t, x)
))

+
∑

x/∈Rauc

Pr(X = x)

( ∑
B(t′,∅)<B(t,∅)

n−1∑
k=1

(
n − 1

k

)(
Pr

(
T = t′))k

( ∑
B(t′′,∅)<B(t′,∅)

Pr
(
T = t′′))n−k−1

·
(∑

y /∈Rauc Vt(y)Pr(X = y)∑
y /∈Rauc Pr(X = y)

− B
(
t′,∅))

+
n−1∑
k=1

(
n − 1

k

)
1

k + 1

(
Pr(T = t)

)k
( ∑

B(t′,∅)<B(t,∅)

Pr
(
T = t′))n−k−1

·
(∑

y /∈Rauc Vt(y)Pr(X = y)∑
y /∈Rauc Pr(X = y)

− B(t,∅)

))
(4)

In general, the influence of Rbidder over the calculation taking place in Eq. (4) is through the calculation of the bids 
B(t, ∅), B(t′, ∅) and B(t′′, ∅), as given in (2) and (3).

Using (4) we can now calculate the expected benefit of a random bidder, denoted ubidders . ubidders is different from 
ubidder(t) in the sense that while the latter is the expected benefit of a bidder of a specific type t , the first is the expected 
benefit of a bidder with no a priori information regarding her type, i.e., calculated as: ubidders = ∑

t∈T Pr(T = t)ubidder(t). 
When separating the calculation into its two parts, as explained above, and multiplying by the number of bidders we 
obtain: (1) the expected valuation of the winning bidder, which also captures the efficiency of the allocation made and 
consequently the social welfare (as will be explained in Section 3.3); and (2) the expected second-best bid, which is actually 
the auctioneer’s expected benefit.

3.2. Auctioneer’s side

We now turn to the analysis of the auctioneer’s expected benefit, given her information purchasing and disclosure 
strategy and the bidders’ strategies (captured by their set Rbidder according to which they update the probability distribu-
tion Pr∗(X = x)). Indeed from Section 3.1 we can calculate the auctioneer’s expected benefit, given any set of strategies 
(Rauc, Rbidder), due to the ability to decompose the bidders’ expected benefit into the payment to the auctioneer and the 
expected valuation of the winning bidder. Still, that calculation method is bidder-type oriented, i.e., requires calculating 
the two elements for each bidder type. In the following paragraph we supply a disclosed-value-oriented calculation for the 
auctioneer’s expected benefit. The alternative calculation method is both more intuitive and enables a direct calculation of 
the expected benefit from disclosing any specific disclosed value or when no value is being disclosed.

As discussed earlier, since all bidders have the same information regarding the market structure, they all use the same 
belief Rbidder . In order to formalize the expected second-best bid if disclosing a value x, we first define two probability 
functions. The first is the probability that given that the value disclosed by the auctioneer is x, the bid placed by a random 
bidder equals w , denoted g(w, x), and the second is the probability that the bid placed by a random bidder equals w or 
below, denoted G(w, x). The functions g(w, x) and G(w, x) are given by:

G(w, x) =
∑

B(t,x)≤w

Pr(T = t); g(w, x) =
∑

B(t,x)=w

Pr(T = t) (5)

The expected benefit of the auctioneer when disclosing the information X = x, denoted uauc(X = x), equals the expected 
second-best bid when the bidders are given x, formally calculated as:

uauc(X = x) =
∑

w∈{B(t,x)|t∈T }
w

(
n−1∑
k=1

n

(
n − 1

k

)(
1 − G(w, x)

)(
g(w, x)

)k(
G(w, x) − g(w, x)

)n−k−1

+
n∑(

n

k

)(
g(w, x)

)k(
G(w, x) − g(w, x)

)n−k

)
(6)
k=2
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The calculation iterates over all of the possible second-best bid values, assigning for each its probability of being the second-
best bid. As we consider discrete probability functions, it is possible to have two bidders placing the same highest bid 
(in which case it is also the second-best bid). For any given bid value, w , we therefore consider the probability of having 
either: (i) one bidder bidding more than w , k ∈ 1, ..., (n − 1) bidders bidding exactly w and all of the other bidders bidding 
less than w; or (ii) k ∈ 2, ...,n bidders bidding exactly w and all of the others bidding less than w . Notice that (6) also holds 
for the case where x = ∅ (in which case bidders use B(t, ∅) according to (2)). Consequently, if the strategy of the auctioneer 
is Rauc , and the bidders’ strategy is Rbidder , then the auctioneer’s expected benefit from the auction itself (i.e., excluding the 
payment C ), denoted by u(Rauc, Rbidder), is:

u
(

Rauc, Rbidder) =
∑

x∈Rauc

Pr(X = x) · uauc(x) +
∑

x/∈Rauc

Pr(X = x) · uauc(∅) (7)

We note that the influence of Rbidder over the calculation given in (7) is through the calculation of B(t, x) (according to (1)
and (2)) which is part of the calculation of G(w, x) and g(w, x) according to (5).

The overall expected benefit of the auctioneer, denoted U (Rauc, Rbidder), is given by:

U
(

Rauc, Rbidder) =
{

u(Rauc, Rbidder) if Rauc = ∅
u(Rauc, Rbidder) − C otherwise

(8)

Given the bidders’ belief Rbidder and the cost of obtaining the information C , the auctioneer’s expected-benefit-
maximizing strategy can be obtained by iterating over the different values in X∗ and determining for each value x whether 
it should or should not be disclosed, based on the difference uauc(x) − uauc(∅), resulting in the best Rauc subset. Then, if 
U (Rauc, Rbidder) > U (∅, Rbidder), the information should be purchased, and the values to be disclosed are those in the set 
Rauc . This solution, however, will hold only if the bidders are not acting strategically and stick with their belief Rbidder . 
One important case where the bidders are not acting strategically is when they are not aware of the auctioneer’s option to 
purchase the information (in which case Rbidder = ∅). For example, if the information-provider does not publish her services 
but rather contacts the auctioneer directly, or if the information provider’s assessment requires some complementary infor-
mation that needs to be supplied by the auctioneer and the bidders mistakenly believe such complementary information is 
not available to the auctioneer. We defer the analysis and discussion of this case to Section 3.7.

3.3. Social welfare

The social welfare measure sums the auctioneer’s and bidders’ expected benefits. Since the auctioneer’s expected ben-
efit is actually the second best bid paid by the winner minus the cost of purchasing the information, the social welfare 
essentially measures the true valuation of the item in the eyes of the winner. This represents the efficiency of the allocation 
made and aligns with prior work ([33], pp. 75–76). Alternatively, one may choose to measure the social welfare as the sum 
of the auctioneer’s, the bidders’ and the information provider’s benefits. While we rely on the first measure in this paper, 
none of the qualitative results that are given in Section 5, excluding one example, changes when the latter measure is used 
for social welfare.

While the second-price sealed-bid auction when the common value is certain maximizes social welfare, this property 
does not hold when switching to an uncertain common value model. In the latter case, it is common that the winner is not 
necessarily the one that values the item most based on her true common value. Interestingly, with the option to purchase 
the external information, the social welfare in many cases actually improves (compared to cases without this option). This 
is illustrated in Section 5. Furthermore, as we later demonstrate, the use of subsidy and taxation in our model can also 
improve social welfare if used wisely by a social planner.

3.4. Equilibrium dynamics

We now analyze the case where bidders are aware of the auctioneer’s option to obtain the information at a cost C . 
This case can be considered a variant of a Stackelberg game [19] where the leader is the auctioneer and the followers 
are the bidders. In such scenarios the leader first commits to a strategy and then the followers selfishly optimize their 
own best strategy. As explained earlier, when the auctioneer does not disclose the true outcome the followers, i.e., the 
bidders, have imperfect information about the leader’s actions. This is illustrated in Fig. 1, which provides the extensive 
form representation of the model. First, the common value is determined by nature (node “0”). Then, the auctioneer needs 
to decide whether to purchase or not purchase the information (upper nodes “1”), and if purchasing then whether to 
disclose or hide the value obtained (lower nodes “1”). For the first decision, the auctioneer cannot distinguish between the 
different world states defined by the true value assigned to the common value. For the second (i.e., after purchasing the 
information) the value of X is known to the auctioneer. Then, bidders need to decide on their bid. At this stage the bidders 
can distinguish their state only if the information was purchased and disclosed by the auctioneer. In any other case, bidders 
are not only unaware of the true common value but also do not know if it was not received because the information was 
originally not purchased or it was purchased but not disclosed.
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Fig. 1. Extensive form representation of the game.

We note that both the auctioneer and the bidders do not know the type of the specific bidders taking part in the 
auction (other than a bidder’s own type) – only the distribution of the types is known. Similarly, the players also do not 
know the true common value of the auctioned item. Therefore, our analysis considers the principles of perfect Bayesian 
Nash equilibria. In the remaining of the paper, unless stated otherwise, we use the term equilibrium to refer to a perfect 
Bayesian Nash equilibrium. An equilibrium profile of strategies in this case can be represented by the pair (Rauc, {B(t, x) |
x ∈ X∗ or x = ∅}), from which neither the auctioneer nor the bidders have an incentive to deviate individually. This pair 
maps to whether or not the auctioneer purchases the information (purchases if Rauc �= ∅), what values she discloses (any 
value x ∈ Rauc), what values she does not disclose (any value x /∈ Rauc) and the bidders’ bids, depending on the value they 
receive. Since bidding according to (1) and (2), given Rbidder , dominates any other bidding strategy, we can use a compact 
representation of strategy profiles (or “solutions”) in the form (Rauc, Rbidder), where bidders’ bids are calculated according to 
(1) and (2), based on Rbidder .3

We first show that the pair (Rauc, Rbidder) where Rauc �= Rbidder cannot be stable, hence the potential pure equilibrium 
solutions are necessarily of the form Rauc = Rbidder = R∗ . If indeed the solution is of the form (Rauc, Rbidder), where Rauc �=
Rbidder , then the bidders can benefit from deviating to (i.e., calculating Pr∗(X = x) according to) Rbidder′ = Rauc , since this will 
result in a bid that equals the bidder’s expected valuation of the item in cases where no information is disclosed (whereas 
when Rbidder is used the bid is either greater or lesser than the bidder’s expected valuation of the item).4 In other words, 
since the bidders’ best response is to bid according to Rauc then a solution (Rauc, Rbidder) of the form Rauc �= Rbidder is never 
stable.5 The stability of solutions of the form Rauc = Rbidder = R∗ , however, depends on the auctioneer’s considerations. Being 
the leader, the auctioneer may find it beneficial to deviate to a strategy Rauc′ �= Rauc , given the bidders’ belief Rbidder = Rauc . 
A deviation from a strategy Rauc = ∅ means purchasing the information and using a set Rauc′ �= ∅. Otherwise, if Rauc �= ∅, 
the auctioneer may deviate to not purchasing the information (thus necessarily using Rauc′ = ∅) or using Rauc′ �= Rauc such 
that Rauc′ �= ∅.

To find equilibria of the form Rauc = Rbidder = R∗ �= X∗ , one needs to iterate over all possible sets and calculate for any 
set R ′ ⊆ X∗ the auctioneer’s expected benefit from using that set, U (R ′, R ′), and her expected benefit U (Rauc, R ′) when 
deviating to any other possible set Rauc �= R ′ , assuming all bidders are using R ′ according to (3) to construct their bids 
when the true value is not received from the auctioneer. If the auctioneer benefits by deviating from R ′ to Rauc , then 
(R ′, R ′) is necessarily not in equilibrium, since it is not stable. Formally, a given solution (R ′, R ′) is a pure Perfect Bayesian 
Nash Equilibrium if U (Rauc, R ′) ≤ U (R ′, R ′), ∀Rauc �= R ′ , where U (Rauc, R ′) is the expected benefit of the auctioneer from 
using strategy Rauc while the bidders believe that she is using the strategy R ′ (and bid accordingly), calculated according 
to (8). It is notable that the set {Rauc | Rauc �= R ′} is of size 2k − 1, thus the number of calculations required is exponential 
in k. While this computational aspect is beyond the scope of the current paper, we emphasize that in many domains the 
number of possible outcomes is moderate thus this is of less concern.6

3 For completeness, in the case of Rbidder = X∗ this representation should also specify bidders’ bids when no value is disclosed.
4 In the case where there is a solution (Rauc′

, Rbidder′ ), where Rauc′ �= Rbidder′ , which results in a benefit to the auctioneer that is identical to the one 
obtained with Rbidder′′ = Rauc′

the latter will be chosen as the bidders’ strategy.
5 The optimality of bidding the true valuation of the item (“strategy proofness”) is a known characteristic of the second-price sealed-bid auction for the 

case of “deterministic” single item auction [60,31,40,33]. Similarly, bidding the expected valuation is optimal in such auctions when the item’s value is 
probabilistic as in our case [17].

6 For example, in oil drilling surveys, geologists usually specify 3–4 possible ranges for the amount of oil or gas that is likely to be found in a given area. 
Similarly, when requesting an estimate of the amount of traffic next to an advertising space, the answer would usually be in the form of ranges rather than 
exact numbers.
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Table 1
The model’s solution space (rows represent the auctioneer’s strategy and columns represent bidders’ strategies, captured by their belief Rbidder as explained 
above). The term in each cell is the auctioneer’s expected benefit.

As for the case where Rauc = Rbidder = X∗ , a Perfect Bayesian Nash Equilibrium of this form requires some off-path 
beliefs that would result in optimal bids that are undesirable for the auctioneer, hence pushing her to full disclosure of 
values. A possible solution in this case is to use the off-path bidder beliefs that, with probability 1, the reached node is the 
one encoding the history in which the auctioneer purchased the information and found the common value to be xmin =
argminx{uauc(X = x)}. That is, all bidders think that, with probability 1, the undisclosed value is the one that minimizes 
the auctioneer’s expected benefit upon disclosure. A bidder with type t should then bid Vt(xmin). Such off-path actions 
would not result in Rauc = Rbidder = X∗ always being a Perfect Bayesian Nash Equilibrium, as it does not guarantee that the 
auctioneer has no incentive to deviate to a strategy Rauc = ∅. Still, later on we prove that if there is no stable solution of 
the form (R ′, R ′), where R ′ �= X∗ , then (X∗, X∗) with the above off-path bidder beliefs is necessarily a Perfect Bayesian Nash 
Equilibrium.

Table 1 illustrates the general solution space in the form of a bi-dimensional matrix, where the rows are the auctioneer’s 
possible strategies and the columns are the bidders’ beliefs. Each cell in the matrix contains the expected benefit of the 
auctioneer given her strategy (determined by the row) and the bidders’ beliefs (determined by the column). The matrix is 
of size 2k ∗ 2k since any possible value of X can be either disclosed or not disclosed. The first row, in which Rauc = ∅, is the 
only row where the cost C does not need to be subtracted from the auctioneer’s expected benefit from the auction itself, 
because, as discussed earlier, if she chooses not to reveal any information, the dominating strategy for her is not to purchase 
the information in the first place (since this has the same outcome as purchasing and not revealing any value, however the 
cost C is saved).

The last row represents the case where the auctioneer always reveals the true outcome of X (Rauc = X∗). In this case, 
the auctioneer’s expected benefit is the same regardless of the bidders’ belief (i.e., u(X∗, Ri) = u(X∗, R j) ∀Ri, R j). This is 
because in this case the bidders will not be required to perform any probabilistic update and will always bid based on the 
value revealed, using (1). A solution (R∗, R∗) that yields the auctioneer an expected benefit greater than or equal to the 
expected benefit if switching to any other strategy Rauc is necessarily an equilibrium. The characterization of such a solution 
within the context of the matrix in Table 1 is a value on the diagonal that is greater than or equal to any other value in its 
column.

We note that it is possible to have more than a single equilibrium in our model. The research on multiple non-dominating 
equilibrium strategies in game and agents theory is quite rich and is beyond the scope of the current paper. Nonetheless, 
when considering the problem in its extensive form, each set Rauc defines a subgame whose equilibrium solution is as-
sociated with some expected benefit to the auctioneer. Therefore, since the auctioneer is the first to act in this game, the 
equilibrium that will be used is the one associated with the maximum expected benefit for the auctioneer.7 For expo-
sition purposes, in the remainder of the paper we will refer to all the equilibria as “stable solutions” and use the term 
“equilibrium” to refer only to the one which is preferred by the auctioneer.

Theorem 1. If the solution (X∗, X∗), where bidders’ off-path belief is that the common value is xmin = argminx{uauc(X = x)}, is not 
stable, then the solution (∅, ∅) is necessarily stale.

Proof. If the solution (X∗, X∗), in which bidders’ off-path belief is that the common value is xmin = argminx{uauc(X = x)}, is 
not stable then the auctioneer must have an incentive to deviate to some Rauc′

. Deviating from Rauc = X∗ to Rauc′
/∈ {X∗, ∅}

cannot be a dominating strategy for the auctioneer in this case. This is because the expected benefit when disclosing 
any value xi ∈ Rauc′

is the same as when disclosing it with Rauc = X∗ , and for any value xi not disclosed (xi /∈ Rauc′
) the 

expected benefit is min{uauc(X = x)} ≤ uauc(X = xi). Therefore, the only plausible deviation is to Rauc = ∅ (for the benefit of 
saving the cost C ). However if deviating to Rauc = ∅ is beneficial then the marginal benefit from purchasing the information 
compared to when not purchasing the information, given that the bidders bid according to xmin = argminx{uauc(X = x)}

7 And if there are several equilibria yielding the same highest expected benefit for the auctioneer then the one represented first (as a row) in Table 1
among them is used.
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whenever no value is disclosed, is lesser than the cost C of purchasing the information. The expected benefit is given 
by 

∑
x uauc(X = x)Pr(X = x), hence the marginal benefit from deviating to Rauc = ∅ is thus given by 

∑
x(uauc(X = x) −

miny{uauc(X = y)})Pr(X = x), and according to the above must satisfy 
∑

x(uauc(X = x) − miny{uauc(X = y)})Pr(X = x) < C . 
We now show that if the latter inequality holds then (∅, ∅) is necessarily a stable solution. When bidders use Rbidder = ∅
then the benefit for the auctioneer from deviating to any strategy Rauc = X ′ �= ∅ is given by 

∑
x∈X ′ (uauc(X = x) − uauc(X =

∅))Pr(X = x) <
∑

x(uauc(X = x) − miny{uauc(X = y)})Pr(X = x) < C . Therefore there is no incentive for the auctioneer to 
deviate from (∅, ∅). �

The above theorem establishes the following corollary.

Corollary 1. There is always a Perfect Bayesian Nash Equilibrium of the form (R, R) to the problem.

Among the potential solutions to the problem, the solution (∅, ∅) is unique in the sense that if it is stable, then it is 
necessarily the equilibrium solution, i.e., there is no other stable solution (R, R) associated with a greater expected benefit 
to the auctioneer. This is proved in Theorem 2.

Theorem 2. If the solution (∅, ∅) is stable then it is necessarily the equilibrium.

Proof. The stability of the solution according to which the auctioneer does not purchase the information is achieved only 
when u(∅, ∅) is greater than or equal to any other element in the first column of the solution space matrix (see Table 1). 
We show that when this condition is satisfied, any other potential solution of the form (R, R) is either an unstable solution 
or offers an expected benefit lower than u(∅, ∅) to the auctioneer.

Consider a potential solution (R, R), where R �= ∅. We distinguish between two cases. The first is u(∅, R) ≤ u(∅, ∅), 
i.e., when the second-best bid, when not disclosing any information, given the bidders’ belief R , is less than or equal to 
the second best bid when no information is being disclosed and the bidders’ belief is Rbidder = ∅. In this case, for any 
value x ∈ R the second-best bid is the same in both cases (i.e., both when Rbidder = R and when Rbidder = ∅) and for 
any value x /∈ R the auctioneer obtains u(∅, R) (if bidders use R) and u(∅, ∅) (if bidders use ∅).8 Therefore, given that 
u(∅, R) ≤ u(∅, ∅), u(R, ∅) ≥ u(R, R) (because for any value x ∈ R the auctioneer’s expected benefit is the same for (R, ∅)

and (R, R), and for the value x /∈ R her expected benefit is greater for (R, ∅) than for (R, R) because u(∅, R) ≤ u(∅, ∅)). 
Consequently U (R, ∅) = u(R, ∅) − C ≥ u(R, R) − C = U (R, R). Since (∅, ∅) is stable, U (∅, ∅) ≥ U (R, ∅) ≥ U (R, R), and this 
solution is the equilibrium.

The second case is u(∅, R) > u(∅, ∅), i.e., when the second-best bid when not disclosing any information, given the 
bidders’ belief R , is greater than the second-best bid when no information is being disclosed and the bidders’ belief is 
Rbidder = ∅. We note that in general for any bidders’ belief R ′ , the difference in the auctioneer’s expected revenue from 
the auction (excluding the payment C ) when deviating from ∅ to R ′′ is given by u(R ′′, R ′) − u(∅, R ′) = ∑

x∈R ′′(uauc(x) −
uauc(∅, R ′))Pr(X = x) (as for any value x /∈ R ′′ the bids in both cases are similar). Given that u(∅, R) > u(∅, ∅), we obtain 
u(R, ∅) −u(∅, ∅) = ∑

x∈R(uauc(x) −uauc(∅, ∅))Pr(X = x) >
∑

x∈R(uauc(x) −uauc(∅, R))Pr(X = x) = u(R, R) −u(∅, R) (because of 
subtracting a smaller value). Furthermore since (∅, ∅) is stable, we know that u(R, ∅) − C ≤ u(∅, ∅). Therefore u(R, R) − C <

u(∅, R), hence the solution (R, R) is not stable. �
The implications of the latter proof are important for three reasons. First, this facilitates the study of the change in the 

equilibrium structure as a function of the cost C as discussed in the following paragraphs. Second, it enables immediate 
determination of whether or not the external information is purchased by the auctioneer for any given setting – the infor-
mation is necessarily purchased if there exists R such that U (R, ∅) > u(∅, ∅), and not purchased otherwise. This is because 
there is always an equilibrium (according to Corollary 1) and unless (∅, ∅) is stable, the equilibrium is different than (∅, ∅). 
Finally, it suggests that at the point of switching from purchasing to not purchasing the information, the auctioneer’s ex-
pected benefit necessarily does not decrease by switching to not purchasing the information (which is equivalent to not 
having the information provider in the market in the first place).

3.5. The effect of the information cost

Based on the equilibrium analysis that was introduced in the former section, we now analyze the effect of the cost of 
obtaining the information (C ) on the equilibrium structure. We begin with Proposition 1 that states that once a solution 
becomes unstable due to the cost of obtaining the information, it will remain unstable for any greater cost C .

Proposition 1. If a solution (R, R), where R �= ∅, is not stable for a cost C then it is necessarily not stable for C ′ > C.

8 This is because given bidders’ belief Rbidder the second-best bid when not disclosing the information is similar, regardless of the strategy used by the 
auctioneer. In particular, the second-best bid when not disclosing the information equals u(∅, Rbidder) since in that case the auctioneer never discloses the 
information thus bidders always bid B(t, ∅) according to Rbidder .



34 D. Sarne et al. / Artificial Intelligence 215 (2014) 24–54
Proof. The solution (R, R) can become stable only if its value to the auctioneer becomes greater than or equal to the 
value from any other solution (R ′, R), i.e., if U (R, R) ≥ U (R ′, R) for any R ′ . However, according to (8) an increase in the 
value of C does not affect the value of the solution (∅, R), however it decreases the value of any other solution (R ′, R)

equally. Therefore, if (R, R) was initially unstable, there was at least one solution in its column associated with a greater 
expected benefit to the auctioneer, and the increase in C will necessarily keep or even strengthen (in the case of (∅, R)) the 
dominance of these other solutions over (R, R) from the auctioneer’s point of view. �

The immediate implication of Proposition 1 is that there is at most one cost C for which the equilibrium switches from 
(R, R) to (R ′, R ′) (where R �= R ′ and R, R ′ ⊆ X∗). Proposition 2 characterizes the interval of costs for which the equilibrium 
is (∅, ∅).

Proposition 2. For any setting the solution (∅, ∅) is the equilibrium if and only if C > C∅ = max(u(R, ∅) | R ⊆ X∗) − u(∅, ∅).

Proof. This is straightforward from Theorem 2 – the solution (∅, ∅) is stable if its expected benefit to the auctioneer is 
greater than the one obtained from any other solution (R, ∅), i.e., if U (R, ∅) = u(R, ∅) − C ≤ u(∅, ∅) which is equivalent 
to the condition given in the proposition. Once the solution (∅, ∅) is stable, it is also the equilibrium according to Theo-
rem 2. �

Based on Propositions 1–2 we can summarize the dependency of the equilibrium solution (and consequently the ex-
pected benefit of the auctioneer) in the cost of obtaining the information C . Since, as shown above, an equilibrium solution 
always exists, then for C = 0 the equilibrium is either:

• (∅, ∅) – in this case it remains the equilibrium for any C ′ > 0 according to Proposition 2.
• (X∗, X∗) – in this case, as C increases, none of the solutions R /∈ {∅, X∗} will become the equilibrium, and (X∗, X∗) will 

remain the equilibrium for any cost C < C∅ and change to (∅, ∅) for any cost C > C∅ (Theorem 2).
• (R, R) where R /∈ {∅, X∗} – in this case, as the value of C increases the equilibrium may change to (R ′, R ′), R ′ ⊂ X∗

(R ′ �= ∅), (and possibly again to other equilibria of that form, however will never return to an equilibrium that already 
ceased to exist for some lower C value, according to Proposition 1). Regardless of whether changes of the latter type 
occur, for some C ′ > 0 the equilibrium will become either: (a) (∅, ∅), in which case it remains the equilibrium for any 
C ′′ > C ′ according to Proposition 2; or (b) (X∗, X∗), in which case it will remain the equilibrium for any cost C < C∅
and change to (∅, ∅) for any cost C > C∅ , according to Proposition 2.

Proposition 3 characterizes the nature of the auctioneer’s expected benefit as a function of C . It suggests that for the 
interval (0, C∅), i.e., as long as (∅, ∅) is not the equilibrium solution, the auctioneer’s expected benefit necessarily decreases 
as C increases. Then, at cost C∅ it increases by some constant C ′ ≥ 0 (in a “phase transition”-like pattern) and remains at 
that value for any C > C∅ .

Proposition 3. If (R, R) is the equilibrium associated with a cost C , and (R ′, R ′) is the equilibrium associated with C ′ > C then: (a) if 
R = R ′ �= ∅ then U (R, R) = U (R ′, R ′) + C ′ − C > U (R ′, R ′); (b) if R �= ∅ and R ′ /∈ {R, ∅} then U (R, R) > U (R ′, R ′); (c) if C ′ = C∅
and C = C∅ − ε (where ε → 0) then U (R ′, R ′) ≥ U (R, R); and (d) if R = R ′ = ∅ then U (R, R) = U (R ′, R ′).

Proof. If R = R ′ �= ∅ then according to (8) the only change in the expected benefit is the difference C ′ − C , thus proving 
part (a). In order to prove part (b) we show that any transition from equilibrium (R, R) to (R ′, R ′) where R, R ′ �= ∅ can 
never result in an increase in the auctioneer’s expected benefit. The transition from (R, R) to (R ′, R ′) can occur only if 
(R, R) is no longer stable (i.e., when U (∅, R) > U (R, R)), in which case we necessarily switch to another equilibrium that is 
associated with an equal or lower expected benefit (as otherwise it would have been the equilibrium for lower C values). 
The proof for part (c) immediately derives from Theorem 2 (see discussion of the implications given right after that proof). 
Finally, part (d) holds since U (∅, ∅) does not depend on C . �

Fig. 2 depicts the typical behavior of the auctioneer’s expected benefit as a function of the cost C as outlined above. The 
setting considers three agents of four possible types, and is fully described in the table to the right of the figure. The first 
column of the table depicts the different bidder types and the second column gives their probability. Similarly, the second 
and third rows depict the different possible values of X (denoted x1, x2, x3 and x4) and their probabilities. The remaining 
values are the values that bidders of different types assign different possible values of the parameter X . For example, if 
a bidder is of type 1, then her valuation of x1 is 54. The auctioneer’s expected benefit table for the different strategy 
combinations for the case C = 0 is given in Table 2. Here the notation {i, j, k} is used to denote a strategy according to which 
the auctioneer discloses {xi, x j, xk}. According to the table there are three stable solutions: ({2, 4}, {2, 4}), ({1, 2, 4}, {1, 2, 4})
and ({1, 2, 3, 4}, {1, 2, 3, 4}), where the one associated with the higher expected benefit to the auctioneer is ({2, 4}, {2, 4}). 
Therefore the latter solution becomes the equilibrium and remains the equilibrium for any C < 0.93. For C = 0.93 that 
solution is no longer stable, as the auctioneer has an incentive to deviate to (∅, {2, 4}) which offers her a greater expected 
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Fig. 2. An example for a case where there are three different equilibria, each for a different interval of the information purchasing cost. The intervals are 
[0, 0.93], [0.93, 1.15] and [1.15, ∞].

Table 2
The auctioneer’s expected benefit table for C = 0, using the setting of Fig. 2.

benefit. The two other solutions are, however, stable for C = 0.93 and thus one of them becomes the equilibrium at that 
point, until C = 1.15. When C = 1.15, these solutions are still stable, however the solution (∅, ∅) also becomes stable, and 
since the latter offers a greater expected benefit to the auctioneer it becomes the equilibrium. From this point on, the 
solution (∅, ∅) remains the equilibrium according to Proposition 2.

Since any equilibrium that holds in our model holds for a continuous interval of C values, the bidder’s expected benefit 
as a function of C can be described as a step function, according to which the bidders’ expected benefit changes only in C
values for which the equilibrium changes. The expected social welfare, which is the sum of the auctioneer’s and bidders’ 
expected benefit, exhibits a behavior similar to the auctioneer’s expected benefit except that with any equilibrium transition 
the overall sum can either increase or decrease by some constant C ′ , due to the change in the bidders’ expected benefit.

Based on the above analysis we introduce Algorithm 1, which enables efficient calculation of the pure equilibrium for 
all different possible C values. Algorithm 1 receives as an input the matrix M which is equivalent to Table 1 for C = 0 and 
outputs a set of intervals and their corresponding equilibrium strategy, stored as tuples in the vector Solution. Throughout 
the algorithm’s execution, we use the vector S to store the set of solutions (other than R = ∅ and R = X∗) that are stable 
for a cost C ′ . The solutions in S are sorted according to their value to the auctioneer, therefore the first element in S is 
necessarily the equilibrium solution for C = C ′ . The initialization of S is given in Step 2 (where condition (a) is for precluding 
the solutions R = ∅ and R = X∗ , condition (b) is for validating that the solution is stable (i.e., requires comparing each matrix 
element on the diagonal with its column members) and condition (c) is for the sorting of the solutions according to their 
expected benefit to the auctioneer).

Next, the algorithm executes its main loop (Steps 4–14). On each iteration, the algorithm finds the value C∗ for which 
the first solution in S (which is the equilibrium for C ′) is no longer stable (Step 5). This can happen only if M[∅, S[1]]
becomes greater than M[S[1], S[1]] (as all other elements of the column S[1] decrease similar to M[S[1], S[1]] due to the 
change in the cost, except for M[∅, S[1]] which does not depend on C ). The value of C∗ is thus M[S[1], S[1]] − M[∅, S[1]]. 
Yet, the fact that S[1] becomes non-stable at cost C∗ does not necessarily mean that this is the lowest cost for which it is 
no longer the equilibrium. It is possible that for some C < C∗ the solution (∅, ∅) is stable and in such case, according to 
Theorem 2, it offers an expected benefit to the auctioneer greater than (S[1], S[1]) for that cost. This latter case is handled 
in Steps 6–10. Here, if indeed (∅, ∅) becomes stable at a cost C∅ (calculated in Step 3, according to Proposition 2) lower 
than C∗ , then according to Theorem 2 the solution (∅, ∅) becomes the equilibrium. Therefore there is no need to check the 
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Algorithm 1 Calculating equilibrium as a function of the cost C .
Input: M – Matrix of the auctioneer’s expected benefit as in Table 1 for C = 0;
Output: Solution – The set of equilibria and the interval of C values for which each equilibrium solution holds.
1: Set C ′ = 0; Solution = {∅};
2: Set S = [R ′

1, ..., R ′
n′ ] such that: (a) R ′

i /∈ {∅, X∗}; (b) M[R ′
i , R ′

i ] ≥ M[R ′
j , R ′

i ] ∀R ′
j ⊆ X∗; (c) M[R ′

i , R ′
i ] ≥ M[R ′

j , R ′
j ] ∀i < j;

3: Set C∅ = max{M[R, ∅] − M[∅, ∅]|R ⊆ X∗}
4: while S �= ∅ do
5: Set C∗ = M[S[1], S[1]] − M[∅, S[1]]
6: if C∗ > C∅ then
7: Add tuple (C ′, C∅, S[1]) to Solution;
8: Add tuple (C∅, ∞, ∅) to Solution;
9: return Solution ;

10: end if
11: Add tuple (C ′, C∗, S[1]) to Solution;
12: Remove from S any element i for which M[S[i], S[i]] − C∗ < M[∅, S[i]];
13: Set C ′ = C∗;
14: end while
15: Add tuple (C ′, C∅, X∗) to Solution;
16: Add (C∅, ∞, ∅) to Solution;
17: return Solution

remaining elements of S . In that case the algorithm adds to Solution the appropriate intervals for the equilibria (S[1], S[1])
and (∅, ∅) (Steps 7 and 8), terminating and returning Solution right after (Step 9). Otherwise, if C∗ ≤ C∅ in the check made 
in Step 6, the interval (C ′, C∗) is added to Solution, with S[1] as the equilibrium (Step 11), and all other solutions in S are 
re-checked for stability given the new C∗ value that was found (Step 12). Then, at Step 13, the value of C ′ is set to C∗ as 
it is now the beginning of the next interval to be added to Solution (according to Proposition 3). The iterations in the main 
loop continue until either identifying the solution (∅, ∅) as a stable solution and terminating (Step 9), or when there are no 
further stable solutions for the current C ′ (i.e., S is empty). In the latter case, the solution (∅, ∅) is necessarily not stable for 
the current C ′ value (as otherwise the algorithm would have terminated in Step 9). Therefore, according to Corollary 1, in 
the interval (C ′, C∅) the equilibrium is necessarily (X∗, X∗), and from C∅ and on (∅, ∅) is the equilibrium solution (according 
to Proposition 1). Therefore the algorithm adds these two intervals to Solution (Steps 15–16) and outputs the vector Solution
(Step 17).

One important thing about Algorithm 1 is that it does not require any knowledge of the problem setting other than the 
matrix M .9 Therefore, in order to provide a complete analysis of the equilibrium solutions and the resulting benefit of any 
of the players as a function of the cost C , one only needs to calculate once the expected benefit of the auctioneer for the 
2k · 2k possible strategy combinations. This capability provided by Algorithm 1 becomes of great importance whenever the 
auctioneer attempts to influence her expected benefit by paying the information provider to change the price charged for 
the information (e.g., see Section 5.3) and when the social planner considers the option for using taxation or subsidy (e.g., 
see Section 5.4).

3.6. Self-interested information-provider

The analysis up to this point assumed that the cost of obtaining the information is exogenously pre-set by the 
information-provider. In the following paragraphs we discuss the implications of a self-interested information-provider. 
If the information-provider is self-interested then this becomes a three-way Stackelberg game: the information-provider 
first sets its price, then the self-interested auctioneer decides whether to buy the information, and if so, what to disclose, 
and finally the bidders respond. In this case the information-provider will set the highest cost C for which information is 
purchased.

Finding the highest cost C for which the information is still purchased is straightforward, based on the analysis given 
in Section 3.5 – the information-provider merely needs to set its cost as C = C∅ − ε , where ε → 0. Since there is always 
an equilibrium solution to the problem, then given Proposition 2, it is guaranteed that, according to the equilibrium, the 
information is purchased for cost C∅ − ε , and that for any cost C ≥ C∅ the information is not purchased.

In some cases the self-interested information provider may choose to set a price different from C∅ − ε . For example, in 
cases where a fixed price needs to be set in a market where different auctions with varying settings continuously take place, 
or in cases where there is some uncertainty associated with the setting used (e.g., the number of bidders participating in 
the auction is unknown to the information-provider or is associated with some probability distribution). In these cases the 
self-interested information-provider will need to calculate for each cost C the number of auctions in which her services will 
be purchased and choose the price associated with the maximum product.

9 Indeed the calculation of M for C = 0 is setting-dependent, however once M is calculated and given to the algorithm, all calculations are setting-
independent and apply to the matrix M in general.
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3.7. Bidder’s unawareness of the auctioneer’s option to purchase information

The analysis of the case where bidders are unaware of the auctioneer’s option to purchase the information is an instance 
of the case where the auctioneer needs to calculate her expected-benefit-maximizing strategy given the bidders’ belief 
Rbidder , as given in Section 3.2, for Rbidder = ∅. In this case, the auctioneer will simply choose the subset Rauc associated 
with the maximum value according to the first column in Table 1. Since all elements in the first column, except for (∅, ∅), 
decrease equally due to the increase in the value C , the auctioneer will keep on using this strategy for any setting with 
greater C values until her expected benefit is less than u(∅, ∅).

As for the dependency of the auctioneer’s expected benefit in C for the case in which the bidders are unaware of the 
auctioneer’s option of purchasing the information, here the only possible switch is from Rauc �= ∅ to Rauc = ∅ (though this 
derives only from the auctioneer’s optimization considerations rather than stability considerations). This is because once 
the auctioneer determines the strategy Rauc that yields her the maximum expected benefit, the expected benefit from this 
strategy and from any other strategy R �= ∅ decreases equally due to an increase in the value of C . Therefore, the only way 
that the choice of a preferred subset-to-be-disclosed can change is when Rauc = ∅ becomes associated with the highest 
value in its column in Table 1. Furthermore, the expected benefit of the auctioneer at the cost of transition does not change 
(since otherwise the auctioneer would have kept the Rauc �= ∅ strategy), and remains constant as C further increases (as the 
expected benefit with Rauc = ∅ does not depend on C ).

Interestingly, despite what might seem like an advantage for the auctioneer in having the bidders unaware of her option 
to purchase the information, the cost for which the information is no longer purchased is the same both with and without 
the bidders’ awareness.

Proposition 4. The cost C for which the auctioneer switches to not purchasing the information in the model variant where bidders are 
aware of the option to purchase the information is equal to the cost for which she switches to not purchasing the information in the 
model variant where bidders are unaware of that option.

Proof. The stability of the solution according to which the auctioneer does not purchase the information in the model with 
aware bidders is achieved only when u(∅, ∅) is greater than or equal to any other element in the first column of the solution 
space matrix (see Table 1). This is also, however, the condition for switching to not purchasing the information in the model 
with unaware bidders. According to Theorem 2, if (∅, ∅) is a stable solution then it is necessarily also the equilibrium. �
3.8. Homogeneous bidders

The benefit for the auctioneer in selectively disclosing information to the bidders becomes mostly apparent when bidders 
are heterogeneous. This is because when bidders are heterogeneous the auctioneer can take advantage of the differences in 
their valuations of the information she discloses. Yet, in some cases bidders can be quite homogeneous. Lemma 1 relates to 
the case of fully homogeneous bidders, revealing an interesting characterization of the solution space illustrated in Table 1
that concerns this case.

Lemma 1. If the bidders are all of the same type (i.e., homogeneous in their private valuations) then all solutions of type (Rauc, Rauc)

where Rauc �= ∅ will yield the same expected benefit to the auctioneer, regardless of the values being disclosed in each of them.

Proof. Since the agents are of the same type t , they all place the same bid, which is necessarily also the second-best 
bid. Therefore the expected benefit of the auctioneer in equilibrium when the set R is used is given by U (R, R) =∑

x∈R Pr(X = x) · Vt(x)+ B(t, ∅) ·∑x/∈R Pr(X = x)− C . Substituting (3) in (2) obtains: B(t, ∅) = ∑
x/∈R Vt(x) · Pr(X=x)∑

y /∈R Pr(X=y)
. Sub-

stituting the latter term in U (R, R) above obtains: U (R, R) = ∑
x∈R Pr(X = x) · Vt(x)+∑

x/∈R Pr(X = x) · Vt(x)−C = ∑
Pr(X =

x) · Vt(x) − C , which means that regardless of the equilibrium that will hold (other than (∅, ∅)) the expected benefit for the 
auctioneer is similar. �

Furthermore, Proposition 5 reveals an interesting property of the model when bidders are homogeneous, according to 
which the auctioneer necessarily loses due to the existence of a self-interested information-provider.

Proposition 5. When bidders are homogeneous in their private valuations, then if there is a price C for which the equilibrium is (R, R), 
where R �= ∅, then the auctioneer necessarily loses from having a self-interested information-provider in the market.

Proof. The proof is based on Lemma 1: For C = 0 all potential equilibrium solutions yield the same expected benefit to 
the auctioneer as R = ∅ and less for any C > 0. Therefore, if there is a value C ′ for which R �= ∅ is the equilibrium, then 
the self-interested information-provider necessarily charges C ′ > 0 such that the equilibrium is R �= ∅ and the auctioneer’s 
expected benefit is worse than u(∅, ∅) (which is equivalent to not having the information-provider’s option in the first 
place). �
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3.9. The case of a noisy information provider

In some cases, the information provider is incapable of providing the exact value x, but instead can provide a more 
accurate distribution of outcomes. While the bidding strategy of bidders in this case slightly changes, as detailed in the 
following paragraph, the remaining analysis, as given in this section, holds.

Assume that instead of providing the exact value x, the information provider provides some distribution D j such that 
PrD j (X = x) is the revised probability of x (

∑
PrD j (X = x) = 1). We assume that the information provider’s distribution is 

more accurate than the a priori probability Pr(X = x), hence overriding it if obtained as the information provider’s output. 
We use D = {D1, ..., D |D|} to denote the set of possible revised distributions the information provider will possibly provide, 
and Pr(D = D j) to denote the probability of each distribution D j being the one returned by the information provider 
(
∑

Pr(D = D j) = 1). Both the set D and the probabilities assigned to outputting its different elements derive from the 
a priori probability Pr(X = x) and the information provider’s capabilities to distinguish between the different values the 
common value may obtain (capabilities which are assumed to be known to the auctioneer and bidders). Since information 
disclosure is assumed to be truthful, then if disclosing the information the auctioneer will disclose the distribution D j

obtained from the information provider as-is. The auctioneer’s strategy Rauc and the set Rbidder used for the bidders’ strategy 
thus include a subset of D rather than discrete values.

In this case, if a new distribution D j is disclosed then, for the same analysis principles given above, regardless of the 
bidders’ belief, a type t bidder’s bid will be B(t, D j) = ∑

Vt(x) · PrD j (X = x). Similarly, if no information is disclosed then: 
(a) if Rbidder = ∅ then a type t bidder’s bid will be B(t, ∅) = ∑

Vt(x) · Pr(X = x); and (b) Otherwise, i.e., if Rbidder �= ∅, then 
B(t, ∅) = ∑

x/∈Rbidder Vt(x) · Pr∗(X = x), where:

Pr∗(X = x) =
∑

D j /∈Rbidder Pr(D = D j)PrD j (X = x)∑
D j /∈Rbidder Pr(D = D j)

(9)

The rest of the analysis remains unchanged, however the bi-dimensional matrix that is used for the analysis is of size 
2|D| rather than 2k as before, i.e., each row/column relates to a different subset of D .

4. Using mixed strategies

In this section we extend the equilibrium analysis to the case of using mixed strategies. The nature of the mixed-strategy 
perfect Bayesian Nash equilibrium in our model is necessarily such that while the auctioneer randomizes between the 
different pure strategies the bidders keep using a pure strategy. This is due to the fact that if the auctioneer discloses the 
value x of X then the dominating strategy for each bidder is to bid her expected private value, as before, i.e.,

B(t, x) = Vt(x) (10)

Similarly, when a value is not disclosed, the dominating strategy for the bidders is to bid their expected individual 
private value, based on their belief of the strategy used by the auctioneer (and consequently the probability they as-
sign to each value x ∈ X when information is not disclosed). Therefore, an auctioneer’s strategy can be represented as 
Rauc = (p, p1, ..., pk), where p is the probability that the information indeed will be purchased and pi (1 ≤ i ≤ k) is the 
probability that the value xi will be disclosed if indeed the information is purchased and this value turns out to be the true 
common value.

In this case, if the auctioneer does not disclose any value, the probabilistic update, according to which the new 
posterior probability Pr∗(X = x) is calculated for any value xi being the true common value, given the bidder’s belief 
Rbidder = (p, p1, ..., pk), is given by:

Pr∗(X = xi) = Pr(X = xi)(p(1 − pi) + (1 − p))

(1 − p) + p
∑

(1 − pi)Pr(X = xi)
(11)

The term in the numerator is the probability that xi indeed will be the true value and will not be disclosed. If indeed xi is 
the true value (i.e., with a probability of Pr(X = xi)) then it will not be disclosed either if the information is not purchased 
(i.e., with a probability of (1 − p)) or if purchased but not disclosed (i.e., with a probability of p(1 − pi)). The term in the 
denominator is the overall probability that the information will not be disclosed. This can happen either if the information 
will not be purchased (i.e., with a probability of (1 − p)) or when the information will be purchased however the value will 
not be disclosed (i.e., with probability of p 

∑
(1 − pi)Pr(X = xi)).

The bid placed by a bidder of type t in this case, B(t, ∅), equals her expected private value as before, i.e.:

B(t,∅) =
∑

Vt(x) · Pr∗(X = xi) (12)

Consequently, if the strategy of the auctioneer is Rauc , and the bidders’ strategy is to bid according to Rbidder , then the 
auctioneer’s expected benefit from the auction itself (i.e., excluding the payment C ), u(Rauc, Rbidder), is:
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Fig. 3. The auctioneer’s expected benefit as a function of the information purchasing cost, considering both mixed and pure solutions.

u
(

Rauc, Rbidder) = p
∑

Pr(X = xi)pi · uauc(x) +
(
(1 − p) + p

∑
(1 − pi)Pr(X = xi)

)
· uauc(∅) (13)

where uauc(x) is calculated according to (6). Consequently U (Rauc, Rbidder) = u(Rauc, Rbidder) − p ∗ C .
A stable solution in this case is in the form of Rauc = Rbidder = (p, p1, ..., pk), as bidding according to Rbidder = c

dominates bidding according to any other Rbidder′ if the auctioneer uses Rauc (as shown in Section 3.4 for the pure 
strategies equilibrium). Similarly, the stability conditions for a solution (p, p1, ..., pk) require equal expected benefit for 
the auctioneer if disclosing or not disclosing certain information (or purchasing or not purchasing the information in 
the first place), whenever a mixed strategy is used, or greater expected benefit for a pure strategy used, i.e.: (a) for any 
0 < pi < 1 (or 0 < p < 1): uauc(∅, Rbidder) = uauc(xi) (or uauc(∅, Rbidder) = uauc((1, p1, ..., pk), Rbidder)); (b) for any pi = 0
(or p = 0): uauc(∅, Rbidder) ≥ uauc(xi) (or uauc(∅, Rbidder) ≥ uauc((1, p1, ..., pk), Rbidder)); and (c) for any pi = 1 (or p = 1): 
uauc(∅, Rbidder) ≤ uauc(xi) (or uauc(∅, Rbidder) ≤ uauc((1, p1, ..., pk), Rbidder)). Therefore, when considering also mixed equilib-
ria, one needs to evaluate all the possible solutions of the form (p, p1, ..., pk) that may hold (where each probability is 
either assigned 1, 0 or a value in-between). Each mixed solution of these 2 · 3k combinations (as only one solution where 
p = 0 is applicable) should be first solved for the appropriate probabilities according to the above stability conditions, and 
included in the matrix (Table 1) only if such a solution indeed exists.

It is notable that an equilibrium of the form (p, p1, ..., pk) where more than one of the probabilities in the set obtains a 
value that is not 1 or 0, is very rare, as it requires that there are at least two values xi and x j for which uauc(xi) = uauc(x j) =
uauc(∅, Rbidder). Namely, there are at least two values which the common value may obtain, for which the expected second 
best bid, if these two values are disclosed, is equal.10 Therefore, a mixed equilibrium in our case will typically be one where 
the auctioneer randomizes either between purchasing or not purchasing the information in the first place (while using a 
pure strategy for disclosing values if information is purchased) or one where information is purchased and the auctioneer 
randomizes between disclosing and not disclosing one of the values.

An example where a mixed equilibrium holds is illustrated in Fig. 3. The figure depicts the auctioneer’s expected benefit 
as a function of the information cost, for the setting given in the following table:

n = 3 Private values
x1 x2 x3 x4 x5 x6������������Type’s prob.

Value’s prob.
0.166 0.166 0.166 0.166 0.166 0.167

Type 1 0.333 100 100 0 100 0 0
Type 2 0.333 100 0 100 0 100 0
Type 3 0.334 0 100 100 0 0 100

A mixed equilibrium in this case holds for all information purchasing costs for which information is not purchased 
according to the pure equilibrium (up to a certain limit). The nature of this mixed equilibrium is to have 0 < p < 1 and 
pi ∈ {0, 1} for any i, i.e., when the auctioneer randomizes between purchasing and not purchasing the information, however 
if purchasing, uses a pure strategy. For example, when the information purchasing cost is C = 14, the mixed equilibrium 
is to purchase the information with a probability of p = 0.38 and reveal the value if it turns out to be x1, x2 and x3, i.e., 
Rauc = Rbidder = (0.38, 1, 1, 1, 0, 0, 0). The auctioneer’s expected benefit from this solution is 46.07, compared to 50 with 
the pure equilibrium solution. Overall, the figure shows that the mixed equilibrium, in this case, is dominated by the pure 
equilibrium of not purchasing the information for all values of C where a mixed equilibrium holds.

We note that other than extending the number of strategies that should be considered in the matrix, as detailed above, 
the entire analysis given for the properties of the equilibrium given some cost C still hold (e.g., Theorem 1 and Theorem 2). 

10 And similarly, for 0 < p < 1 and 0 < pi < 1 we require uauc(xi) = uauc((1, p1, ..., pk), Rbidder) = uauc(∅, Rbidder).
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The only parts of the analysis that need to be further extended when considering also mixed equilibria are those related 
to Algorithm 1 (i.e., Proposition 1, Proposition 2, and Proposition 3). This is mainly because the algorithm relies on the 
property whereby the expected benefit of the auctioneer decreases by the same amount that C increases as long as the 
same equilibrium holds. With a mixed equilibrium, the probability the information is purchased changes as the cost of 
purchasing the information changes. Consequently, in the examples given in the following section, we had to calculate the 
mixed equilibria for any value C , rather than use Algorithm 1.

5. Numerical illustrations and market design implications

The analysis given in the previous sections enables the demonstration of the effect of different model parameters 
(the number of bidders, the cost of purchasing the information and the bidders’ private values) over the resulting equi-
librium in terms of the equilibrium structure, the different players’ expected benefit and the social welfare in our hybrid 
setting. In addition, we demonstrate the possible effects of having the option to purchase the information externally and of 
the bidders’ awareness of that option over the auctioneer’s and bidders’ expected benefit and the social welfare. The results 
obtained in some of the cases differ from the ones known for traditional auction settings that do not consider the option 
for purchasing the information and selectively disclosing it. Finally, we demonstrate the effectiveness of market intervention 
in the form of taxation and subsidy. Since the goal of this section is primarily illustrative, it uses abstract synthetic settings 
where different bidder types are arbitrarily assigned their private value for any common value. In general, and unless oth-
erwise stated, all of the examples used in this section are based on three types of bidders, with an equal probability and 
three different possible common values (to which each bidder type assigns a different private value). It is notable that the 
fact that there are three possible bidder types does not constrain the number of bidders in the tested settings in any way, 
and this latter parameter can obtain any (integer) value greater than 1.

5.1. The effect of the different model parameters

The three main parameters that define the problem setting in our model are the number of bidders, the cost of obtaining 
the information and bidders’ valuations based on the values the common value obtains. Fig. 4 illustrates that any variation 
in these parameters can result in a different equilibrium. It depicts the auctioneer’s expected utility as a function of her 
information disclosing strategy (Rauc) and the bidders’ belief (Rbidder) by which they place their bids. The archetypal setting 
used for this figure is described in the following table:

Private values
x1 x2������������Type’s prob.

Value’s prob.
0.5 0.5

Type 1 0.5 3α 4α

Type 2 0.5 32α 42α

The table is similar in its structure to the one used in Fig. 2. In this example there are two possible types of bidders 
and each agent can be of each type with an equal probability. Similarly, there are two different possible values of X and 
their probabilities are equal. The remaining values in the table are the private values that agents of different types assign 
to the different possible values of the parameter X (i.e., the common value). For example, if a bidder is of type 1, then her 
valuation of having the common value be x1 is 3α . The parameter α is thus used to control bidders’ valuations in order to 
generate a wide range of setting variants.

Each of the upper small tables in Fig. 4 represents a different setting, differing from the other settings in its column by 
either C or n (or both) and from the settings in its row by the bidders’ private valuations of the different possible outcomes. 
The stable solutions in each setting are presented with a different background color. As depicted in the figure, for some 
settings there is more than a single stable solution, and the equilibrium is the one that yields the highest benefit for the 
auctioneer. The tables provide only pure-strategy solutions since in all settings, except one, no mixed stable solution was 
found. The only setting where a mixed stable solution was found is where α = 1, n = 3, and C = 1.75. The mixed stable 
solution in this case is Rauc = Rbidder = (0.86, 0, 1) and its expected benefit for the auctioneer is 6.5 (i.e., dominated by the 
pure stable solution). The table at the bottom of the figure depicts the auctioneer’s expected benefit, the bidders’ expected 
individual benefit and the social welfare in the pure-strategy stable solutions found for each of the settings (other than the 
(X∗, X∗) stable solutions, as the auctioneer and bidders’ gain (and consequently the social welfare) in this example is the 
same for {1, 2} as for {2}). As illustrated in the figure, both the equilibrium strategies and the different players’ individual 
performance in equilibrium are highly affected by the choice of the setting used.

To further illustrate the effect of the three parameters over the different players’ expected benefit we introduce Figs. 5
and 6. Fig. 5 depicts the equilibrium’s expected benefit for the auctioneer and bidders and the expected social welfare 
as a function of the cost of the external information, for different numbers of bidders. The setting used for this figure is 
given in the right bottom part of the figure. The behaviors exhibited in the figure are correlated with Proposition 3 and 
the analysis given in Section 3.5 in general. Taking the case where N = 5 as an example, the equilibrium strategy is to 
have the auctioneer purchase the external information if its cost is lower than 22.5 and disclose the true outcome only if it 
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Fig. 4. The auctioneer’s expected benefit for each set of strategies (Rauc, Rbidder) (in the upper small tables where the stable solutions are presented with 
a different background color) and the expected benefit of the different players, and social welfare, in stable solutions (bottom table) for different values 
of the model parameters (number of agents, cost of obtaining the information and valuation of outcomes). The setting includes two agent types (of equal 
probability) and two possible outcomes (with equal probability), where α controls bidders’ valuations as described in the text.

Fig. 5. Auctioneer’s and bidders’ expected benefit and the social welfare as a function of the information cost, for different numbers of bidders.
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Fig. 6. Auctioneer’s and bidders’ expected benefit and the social welfare as a function of the information cost, for different levels of the bidders’ hetero-
geneity.

belongs to the set {x2, x3} (which does not change, based on Proposition 1). Since the expected second-best bid if the set 
{x2, x3} is revealed does not depend on the amount paid for purchasing the information, the decrease in the auctioneer’s 
expected benefit curve equals the change in C . For any cost greater than C = 22.5, the auctioneer will avoid purchasing the 
information, hence her expected benefit is fixed. The information-provider, if self-interested in this case, will set the cost of 
information to be the maximum value in which the information is still purchased by the auctioneer (22.5 for N = 5). The 
bidder’s expected benefit curves are fixed as long as the same equilibrium is used, as bidders are not the ones who pay for 
the information, and change at the points of transition between equilibria. The social welfare curves are the composition 
of the auctioneer’s and bidders’ expected benefit and therefore exhibit a decrease in value that is equal to the increase 
in C , with sharp changes in the value whenever shifting between equilibria. Alternatively, if one chooses to include the 
information provider’s benefits in the social welfare measure, then the social welfare curve would keep the same value 
obtained at the transition cost as long as the same equilibrium holds. We emphasize that all the qualitative results related 
to auctioneer’s and bidders’ preferences given in this section are not affected by the choice of the social welfare measure.

It is notable that the cost threshold whereby the auctioneer no longer purchases the information in equilibrium increases 
as the number of bidders increases. The intuitive explanation for this phenomenon is as follows: the benefit of disclosing the 
information is in having the bidders bid their true private value. When the number of bidders is relatively small, however, 
even if a bidder of the type that most values the auctioned item bids its true value, based on the disclosed common 
value, it is possible that the second-best bid will be relatively low and consequently the auctioneer will not benefit enough 
from revealing the information. As the number of agents increases, it is more probable that at least two agents of types 
that assign a relatively high private value to the disclosed common value will take part in the auction, and therefore the 
cost that the auctioneer will be willing to pay for the information will increase. Overall, we observe that the increase in the 
number of bidders results in an increase in the auctioneer’s expected benefit and a decrease in the bidders’ expected benefit 
(for any number of agents n1 > n2 and cost C for which the same decision of whether or not to purchase the information 
is made). This is explained, once again, by the effect of the increase in the number of bidders on the probability that at 
least two agents of types that assign a relatively high private value to the disclosed common value will take part in the 
auction. A similar effect is observed with the expected social welfare, as this measure represents the efficiency of the item’s 
allocation – the more bidders available in the auction, the greater the winner’s valuation of the item is likely to be.

Fig. 6 offers a similar analysis, emphasizing the effect of the level of heterogeneity between the bidders in the environ-
ment over the expected benefit of the different players in equilibrium. The setting used for this figure is based on 5 agents 
(n = 5) and its description of types and private values is given in the right bottom part of the figure. In this figure, the 
value of α controls the level of similarity between the different types of bidders (similar to the use in the setting on which 
Fig. 4 was based). For α = 0 the bidders are completely homogeneous, and as the value of α increases, the types become in-
creasingly heterogeneous. As depicted in Fig. 6, as the level of the heterogeneity increases, the cost at which the auctioneer 
switches to not purchasing the information in equilibrium increases and the expected auctioneer’s benefit increases (for the 
same cost of purchasing the information, for those segments where the auctioneer either purchases or does not purchase 
the information in both cases). This is explained by the fact that the more heterogeneous the bidders, the more probable it 
is for each of the possible common values to result in a greater expected second-best bid if disclosed. A similar behavior 
is observed with the social welfare and the bidders’ expected benefit. The first is explained by the fact that when the level 
of heterogeneity between the agents increases, the valuation of the bidder that values the item most also increases. The 
second is explained by the fact that the increase in the valuation of the bidder that values the item most is greater than 
the increase in the valuation of the one with the second highest valuation.
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5.2. The optimal number of bidders

The fact that the cost threshold by which the auctioneer no longer purchases the information in equilibrium increases 
as the number of bidders grows results in some non-intuitive model behavior, which relates to the auctioneer’s preferred 
choice of the number of bidders participating in the auction. Indeed, if a similar decision is made for both n1 and n2, where 
n2 > n1, regarding purchasing or not purchasing the information then the auctioneer’s expected benefit is necessarily greater 
with n2. This is because any increase in the number of bidders increases the probability of having the second-best bid be 
of a type with a greater valuation of the auctioned item or service (hence a higher second-best bid as reflected in Fig. 5). 
Nevertheless, since the cost at which the transition between purchasing the information to not purchasing it also increases 
as n increases, it is possible that for some costs, with n1 bidders the information is not purchased in equilibrium and with 
n2 > n1 the information is purchased in equilibrium, yielding to the auctioneer an expected benefit lower than the one 
obtained for n1. This situation is demonstrated in Fig. 5 for cost C = 23. In this case the expected benefit of the auctioneer 
with 5 bidders is greater than her expected benefit with n = 6. In fact, in the example given in Fig. 5 if the number of 
bidders that will take part in the auction is between 3 and 6, then the auctioneer will favor having 6 bidders when the cost 
of obtaining the information is above 25 or below 18.5, only 5 bidders when within the range 22.3–25, and only 4 bidders 
when within the range 18.5–22.2. The expected social welfare is maximized when there are 6 bidders in the case where the 
cost of obtaining the information is below 17 or above 25, 5 bidders when the cost is within the range 22.3–25, 4 bidders 
within the range 18.6–22.3 and 3 bidders within the range 17–18.6.

The above suggests that given the option to limit the number of bidders allowed to participate in the auction, the 
auctioneer should seriously consider using such a limit. Fig. 7 depicts the auctioneer’s expected-benefit-maximizing number 
of bidders, denoted N∗ , given the maximum number of bidders interested in participating in the auction, N , for different C
values, based on the setting described in the table at the bottom right part of the figure. It is noted that in this case, for 
any value C < 6.8 or C > 10.5, the optimal number of bidders is the maximum allowed number of bidders, i.e., N∗ = N . For 
values 6.8 < C < 8.4, for some intervals of N the auctioneer would prefer to use N∗ < N and for 8.4 < C < 10.5, starting 
from some threshold value of N the auctioneer will always prefer to use some fixed value N∗ < N . The figure also depicts 
the auctioneer’s expected benefit, the bidders’ expected benefit and the social welfare for C values that are within the 
different ranges specified above (C < 6.8, 6.8 < C < 8.4, 8.4 < C < 10.5 and C > 10.5). These help explain the patterns 
observed for N∗ . When the cost of purchasing the information is relatively low (C < 6.8 in our case, represented by the 
C = 5 curve) the information is always purchased, regardless of the number of bidders in the auction (this is the equivalent 
to the interval C < 13 in Fig. 5). Therefore an increase in the number of bidders is always favorable for the auctioneer. 
Similarly, when the information is very expensive (C > 10.5 in our case, represented by the C = 12 curve) the information 
is never purchased, regardless of the number of bidders in the auction (e.g., when the cost is greater than the highest 
possible private value of any of the bidders). For 6.8 < C < 8.4 (represented by the C = 8 curve) the auctioneer will switch 
to not purchasing the information for some N , where the N ′ value below which the information is not purchased increases 
as C increases. Therefore, for any N < N ′ the expected benefit of the auctioneer increases as N increases, however once 
reaching N ′ it decreases. This is because with N ′ the expected benefit is greater than with some greater N values, as it 
is better to have N ′ bidders and not purchase the information, than to have more than N ′ bidders however purchase the 
information. Still, since the expected benefit, even when purchasing the information, increases as the number of bidders 
increases, for some N ′′ it becomes once again more beneficial to increase the number of bidders in the auction, hence the 
auctioneer’s expected benefit increases, once again, as a function of N . Finally, in the range 8.4 < C < 10.5 (represented 
by the C = 10 curve), the auctioneer’s expected benefit when not purchasing the information is greater than the expected 
benefit when purchasing the information, regardless of the number of agents used in the latter case. Therefore the value of 
N∗ increases as N increases as long as the resulting equilibrium is not to purchase the information. However, starting from 
N ′′ for which the equilibrium is to purchase the information, the auctioneer is better off with having N ′′ − 1 bidders as 
the expected benefit with this number of bidders (and not purchasing the information) is greater than with more bidders 
(however having to purchase the information).

It is notable that a similar non-standard phenomena is observed with the bidders in our hybrid model. In traditional 
auction models having less bidders participate in the auction is known to be favorable to the bidders [7,64,52] – having less 
bidders means less competition which translates to a lower expected second-best price. In our case, however, the bidders 
may prefer having more competition, depending on the setting used. For example, from Fig. 7 we observe that for C = 8
the expected benefit of the bidders for N = 5 is 1.8 (an average of 0.36 per bidder) and for N = 6 it is 3.88 (an average of 
0.65 per bidder). A similar anomaly in nature is observed also with the social welfare. For example, from the social welfare 
graph in Fig. 7 we observe a decrease in the social welfare from 71 to 69.6 in the transition from 5 bidders to 6 bidders 
when C = 8. These are once again explained by the change in the equilibrium structure due to the increase in the number 
of bidders used.

5.3. The benefit of having the information-provider and of bidder-awareness

Next, we investigate the benefit of having the option for the auctioneer to purchase the information in the first place, 
and the benefit to the different players from having the bidders become aware of that option. We begin with the question 
of whether or not the existence of an information-provider that is willing to sell the information to the auctioneer is always 
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Fig. 7. The auctioneer’s expected-benefit-maximizing number of bidders as a function of the maximum number of bidders from whom she can choose, 
for different information purchasing costs (two upper graphs: left is for selected C values in the range 7.3–8.3, right is for selected C values in the range 
8.8–10.4). The two middle graphs and the bottom left one depict the auctioneer’s and bidders’ expected benefit and the expected social welfare as a 
function of the number of bidders actually used (the horizontal axis), for different C values. The setting used is given in the bottom right table.

beneficial to any of the parties. Seemingly, since the auctioneer can choose between purchasing and not purchasing the 
information, one may assume that having such an option is always beneficial for the auctioneer. Nevertheless, this is not 
generally the case, and as illustrated in Fig. 5 there are many settings where the opposite is true. Taking the case of N = 6
in Fig. 5, if the cost of purchasing the information is C < 6 then the auctioneer’s expected benefit is greater than the one 
resulting from not having the option to purchase the information in the first place. Still, even with that setting, for a cost 
6 ≤ C < 25 the auctioneer is better off not having the option to purchase the information.

The explanation for this interesting phenomena according to which the existence of the option to purchase the infor-
mation results in a substantial degradation in the auctioneer’s benefit, as she could have benefited far more if such an 
option did not even exist, derives from the instability added to the model due to the availability of the information: the 
self-interested information-provider sets its price low enough such that a solution according to which the auctioneer does 
not obtain the information becomes unstable (because of the strong incentive to the auctioneer to deviate to obtaining the 
information and selectively disclosing it). The only stable applicable solution becomes the one where the information is 
purchased, and since the cost of obtaining the information is an inherent component in the auctioneer’s expected benefit, 
the auctioneer ends up doing worse (compared to a similar setting without the option to obtain the information).

One interesting related observation from Fig. 5 is that the expected benefit of the auctioneer, given a significantly high 
cost of purchasing the information, can potentially be greater than in the case where the information is relatively cheap 
or even free (e.g., in Fig. 5, for N = 6 the auctioneer’s expected benefit is greater when the cost of purchasing the in-
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Fig. 8. An example in which the auctioneer is better off paying the information provider in order to make her leave the market completely or charge more 
for the information provided.

Fig. 9. An example of a scenario in which the bidders are better off having an option for the auctioneer to purchase the external information.

formation is 40 compared to when C = 10). In this kind of setting it could be beneficial for the auctioneer to pay the 
information-provider in order to make her leave the market completely or, alternatively, to convince her to charge more 
for the information provided (and publicize the new pricing). Fig. 8 illustrates such a scenario, depicting the auctioneer’s 
expected benefit as a function of the cost of purchasing the information. Here, for any cost C ≤ 6.9 set by the information-
provider, the auctioneer is better off paying her up to (7.39 − 6.9) + C to leave the market (or charge C > 6.9), as in the 
latter case the auctioneer’s expected benefit increases by that amount (compared to when charged C ≤ 6.9).

The benefit for the auctioneer when paying the information-provider to publish (and charge) a different price is not 
limited just to pushing the information-provider off the market as illustrated above. For example, from Fig. 2 we conclude 
that given any cost 0.93 < C < 1.15, the auctioneer can benefit form paying the information-provider C − C ′ in exchange for 
setting a price C ′ < 0.93. We emphasize that despite the fact that the total payment that the auctioneer eventually pays the 
information-provider is C (for changing the price and purchasing the information), the resulting solution is different than 
the one obtained when the price is set to C ′ . This is because here the auctioneer first pays C − C ′ , and by the time the 
auction takes place this is already a sunk cost. Therefore, the auctioneer’s considerations derive from the cost C ′ , hence the 
equilibrium is different.

As for the bidders, in Section 3.5 it was established that their expected benefit does not depend on the cost of the 
information but rather on the transition between the different equilibria. If the information-provider is self-interested, 
then if there is a cost at which the information is purchased, then the information will necessarily be purchased (as the 
information-provider sets its price accordingly). We show that the determination of whether having the information-
provider present is beneficial to bidders is setting-dependent. Figs. 9 and 10 demonstrate the inconclusiveness of the effect: 
in Fig. 9, the absence of the information-provider (which is equivalent to an information-provider charging a substantial 
price C for the information, hence the information is not purchased by the auctioneer) results in an equilibrium with an 
inferior individual bidder’s benefit, whereas in Fig. 10 it is her absence that improves the bidder’s individual benefit.

We now move on to investigating the effect of bidders’ awareness of the option to purchase the information over the 
different players’ expected benefit. Interestingly, we can find examples for cases where bidders are better off being unaware 
than aware of the availability of the information to the auctioneer. Fig. 11 illustrates such a setting. In this figure we can 
see that for any cost C ≤ 13.3, the benefit for the bidders in the case of awareness is 117.2 and the benefit in the case 
of unawareness is 133, hence the bidders actually gained from their ignorance. The explanation for this behavior is, once 
again, originated in the stability considerations. When the bidders are unaware of the auctioneer’s access to the information, 
the auctioneer purchases the information (if C ≤ 13.3), disclosing the common value only if it is x1 or x2. This benefits the 
auctioneer (comparable to the case where bidders are aware of the information purchase option) however is also beneficial 
for the bidders, as it enables them to better distinguish between the different values whenever disclosed, hence avoiding 
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Fig. 10. An example for a scenario in which the bidders are better off not having an option for the auctioneer to purchase the external information.

Fig. 11. The expected benefit of the auctioneer and bidders and the social welfare, as a function of the information cost, when bidders are aware and when 
unaware of the availability of such external information to the auctioneer. Here, bidders are better off being unaware of the availability of the information 
for C ≤ 13.3.

Fig. 12. The expected benefit of the auctioneer and bidders and the social welfare, as a function of the information cost, when bidders are aware and when 
unaware of the availability of such external information to the auctioneer. Here, bidders are better off being aware of the availability of the information for 
C ≤ 20.

high bids when the actual value for them is low. When the bidders are aware of the availability of information, however, 
the strategy Rauc = {x1, x2} is precluded for stability considerations, resulting in an equilibrium Rauc = {x1, x3}, thus the 
bidders end up with a worse expected benefit. A counter-example, in which the bidders are better off being aware of the 
information’s availability to the auctioneer can be found in Fig. 12.
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Fig. 13. The expected benefit of the auctioneer and bidders and the social welfare, as a function of the information cost, when bidders are aware and 
when unaware of the availability of such external information to the auctioneer. Here, the auctioneer prefers bidders’ awareness of the availability of the 
information for C ≤ 4.05 and unawareness otherwise.

Fig. 14. The expected benefit and the social welfare as a function of the information cost, for different levels of the bidders’ heterogeneity.

From Figs. 11 and 12 we observe that, as one may expect, the auctioneer benefits from having the bidders unaware 
of the information availability. Yet, a counter-example according to which the auctioneer prefers that the bidders become 
aware of her option to purchase the information can also be provided. This is demonstrated in Fig. 13. Here, for any cost 
0 ≤ C ≤ 4.05 the equilibrium in the bidders’ awareness case is ({x1, x2, x3}, {x1, x2, x3}) and its expected benefit to the 
auctioneer is greater than in the case where bidders are unaware of the option of purchasing the information. Interestingly, 
for 4.05 < C ≤ 4.3 the equilibrium in the awareness-based variant becomes ({x1, x2, x3, x5}, {x1, x2, x3, x5}), resulting in a 
change in the auctioneer’s preference towards preferring bidder’s unawareness. For any cost C > 4.3 the auctioneer does not 
purchase the information and gains the same expected benefit regardless of the bidders’ awareness or unawareness.

Finally, we note that Figs. 11–13 all demonstrate the phenomena proved in Proposition 4, according to which the transi-
tion to not purchasing the information occurs at the same cost C both when the bidders are aware and when unaware of 
the auctioneer’s option to purchase the information.

5.4. Social planner’s interventions

Finally, we demonstrate the effectiveness of market intervention in our case. The two mechanisms we use are, as dis-
cussed in Section 2, taxation and subsidy.

We begin with subsidy. A subsidy in our model is useful only if it drives the system to a different equilibrium, such that 
the change in the social welfare is greater than the change in the cost that the information-provider charges. An example of 
such case can be found in Fig. 14. Here, it is possible that the price C set by the information-provider precludes the purchase 
of the information in equilibrium, e.g., in the case where the cost of producing the information is C∅ + ε (where ε → 0). In 
such a case, a market planner may find it beneficial to subsidize the production cost so that the information-provider will 
offer the information at a cost C < C∅ (hence it will actually be purchased by the auctioneer). The increase in social welfare 
in this case will be greater than the subsidy paid.

Next, we consider taxation. We note that the social-planner’s proceeds from the tax (i.e., the social planner’s “gains”) 
are not added to the social-welfare calculations (however the tax is subtracted from the auctioneer’s expected benefit, if 
the information is indeed purchased). Fig. 15 depicts the expected social welfare for the setting used in Fig. 2. As can be 
seen from the figure for any cost C < 0.93 (e.g., because the information-provider is active in other markets and hence 
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Fig. 15. The expected social welfare, as a function of the information cost for the setting used in Fig. 2. If the information cost is C < 0.93 then the taxation 
that will result in an effective cost in the range 0.93–1.15 will increase social welfare.

Fig. 16. Example of a case where the social-planner can increase the social welfare by imposing a tax on the information cost.

set a fixed-price that is not the strategic-price for our specific market), setting a tax such that the cost of purchasing the 
information becomes within the range 0.93–1.15 results in an increased expected social welfare.

A similar benefit in taxation can be demonstrated for the case where the information-provider is acting strategically. 
Consider Fig. 16, which depicts the social welfare as a function of the information cost for the setting described in the table 
to the right of the figure. In this case, the social welfare with C = 0 is equal to the social welfare with C∅ (in which case 
the information is not purchased). Therefore, regardless of the price C set by the information-provider (including the case 
where the information-provider is acting strategically, setting a price C∅ − ε (ε → 0)), a tax that is high enough to push the 
auctioneer to not purchase the information will necessarily increase social welfare. We note that unlike with all the other 
examples given, here if we include the information-provider’s benefit in the social welfare measure then the described 
effect will not be obtained. This is due to the fact that the social welfare according to the latter measure will be a flat line 
regardless of the price charged for the information.

6. Related work

In this section we review related work, divided according to the different aspects of the work presented in the paper, 
ranging from model classification through information disclosure issues and to the downsides of the availability of informa-
tion in relevant domains.

6.1. Auctions as means of trading and model classification

Auctions are an effective means of trading and allocating goods whenever the seller is unsure about buyers’ (bidders’) 
exact valuations of the sold item [32,33]. If the seller knew the bidders’ valuations she could have allocated the item to the 
one that valuates it most. The advantage of many auction mechanism variants in this context is in the ability to effectively 
extract the bidders’ valuations (e.g., English auction [40,25,28,31], second-price sealed-bid auction [31,46,40] and VCG [49,10,
24]), resulting in the most efficient allocation [32,33]. Based on its many advantages, the mechanism is commonly used and 
researched [43,5]. Over the years it has evolved to support various settings and applications such as on-line auctions where 
buyers and sellers arrive over time and the mechanism is required to make decisions about each bid as it is received [30,
37,26], matching agents in dynamic two-sided markets [8], resource allocation [45,44] and even for task allocation and joint 
exploration [20,35]. In this context a great emphasis is placed on study of bidding strategies [59,56,4], the use of software 
agents to represent humans in auctions [12] combinatorial auctions [57] and the development of auction protocols that are 
truthful [8,44,13] and robust (e.g., against false-name bids when considering combinatorial auctions [65]).
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Bidders’ valuations are not the only source of uncertainty in auctions. Similar to the case of other forms of trading, there 
might be some uncertainty associated with the value of the sold (auctioned) item. This uncertainty may apply both to sellers 
and bidders, and is an inherent feature of many auction settings. The simplest setting in terms of the bidders’ valuation, 
often termed private value model [32,33,21], is where all bidders know the value of the auctioned item to themselves. This 
model, however, implicitly assumes that no bidder knows the valuations of the other bidders with complete certainty. The 
more complex scenario is the case where the value of the auctioned item is unknown to the bidders at the time of the 
auction. Here, bidders may only have an estimate or some privately known signal, such as an expert’s estimate, that is 
correlated with the true value [58,23,32,33]. Moreover, commonly in this case, other bidders may have some information 
that, if known, would affect the valuation that each particular bidder associates with the item. Namely, values are unknown 
at the time of the auction and information known to other bidders may affect one’s valuation. Such specification is termed 
the interdependent values [3,33]. A special case of the interdependent values model, often termed pure common value model, 
is the one where the value, while unknown at the time of bidding, is the same for all bidders [33].

We illustrate the differences among the three models (private, interdependent and common value) using the “piece of 
art” example commonly found in auction theories textbooks. If a bidder wishes to buy a piece of art for her sole usage, 
her valuation will be based on the utility she derives from possessing it. This scenario typically aligns with the private 
value model. On the other hand, if the bidder is interested in buying this piece of art for her own usage but consid-
ers selling it sometime in the future, then the valuation model will be considered to be the interdependent model, as it 
combines private valuation (modeled as the privately known signal) and some uncertain resale value (modeled as the oth-
ers’ interdependent signal). In contrast, if the bidder is buying the piece of art only for the purpose of reselling it, then 
this case will be considered the common value model as the value derives directly and solely from the price which the 
public associates with this piece of art, which is both independent of the bidder’s private considerations and unknown 
to her.

Many results known for the private value model do not hold for the more general case. For example, the known strategic 
equivalence between Vickrey (second-price sealed-bid) and English auctions for the private model case does not necessarily 
hold for the other models [33]. In the English auction, bids are publicly announced and therefore new information is 
observed by bidders (concerning the valuations of the other bidders), resulting in a dynamic update of each bidder’s beliefs 
and sequentially of her bidding strategy. In contrast, in the Vickrey auction no such information is observed as it is a closed 
form of auction. Moreover, in non-private models the dominant truth-telling strategy is no longer the optimal one [33]. To 
conclude, non-private models must be researched apart from the private value case.

The interdependent value model where the item’s value is a combination of private and common values is sometimes 
referred to as a correlated value model [61]. However, this term is somehow ambiguous and often refers to a different model 
setting. For example, Eso [18] studies an auction model with risk-averse bidders where the correlated value notion stems 
from the correlation coefficient among the bidders’ valuations. A similar model of correlated values was considered by 
Wang [62], aiming to determine the preferred selling mechanism (fixed price or auction) based on the distribution of the 
potential bidders’ valuations.

Many works have attempted to deal with the problem of uncertainty in auctions. Most of these works refer to the 
uncertainty associated with bidders’ information. For example, the bidders may be uncertain regarding the number of bid-
ders participating in the auction, which is often the case in online auctions that apply English-type protocols (e.g., Dyer 
et al. [15]). Alternatively, bidders are often assumed to be ignorant of their own private value and need to expend some 
computational efforts in order to reveal it (e.g., see Parkes [48] and Larson and Sandholm [36], who consider the problem 
in the context of bounded-rational and computationally-bounded agents). Finally, there are situations where the agents are 
uncertain regarding the tasks they need to execute (and consequently their bids) and have only partial control over their 
resources (e.g., Hosam and Khaldoun [29]). None of these works, however, deal with a setting similar to ours, and in par-
ticular do not address the question of information acquisition and disclosure, as well as the influence of a self-interested 
information-provider.

Another aspect according to which the auction literature classifies auction models is the symmetry among the different 
players, distinguishing between symmetric and asymmetric cases. In the context of the interdependent model, the sym-
metry has two aspects. The first concerns the symmetry of the bidders’ valuation function, and the second concerns the 
symmetry in the knowledge available to the bidders regarding the auctioned item (e.g., knowing the signals’ distribution). 
When considering asymmetric models, further interpretations of the concept may be found, e.g., models where the sellers 
are more informative than bidders [2,17], and even variance in bidders’ information (e.g., some bidders can be more in-
formed than others). In the latter case, it has been shown that the advantageous bidder may benefit by signaling the less 
informative bidders to prevent them from bidding [54,55]. Our model is neither purely symmetric nor purely asymmet-
ric but rather a hybrid one. It assumes symmetry between bidders and sellers in terms of the a priori public information 
regarding the valuation of the characteristic variable, and between bidders whenever the auctioneer chooses to disclose 
information. It assumes asymmetry in terms of the bidders’ valuation function, as each bidder’s valuation function may 
be a different function of the characteristic variable. Another asymmetry in our model is in the availability of the in-
formation: only the auctioneer may purchase the information, and it is her choice whether or not to disclose it to the 
bidders.
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6.2. Information disclosure

The role of information revelation in the design of auctions has been investigated ever since Milgrom and Weber’s 
seminal paper in 1982 [40]. According to the “linkage principle”, on average (over the seller’s information) the auctioneer’s 
benefits are enhanced by committing to the policy of always providing the bidders with as much information as possible 
about the value of the good. This latter result is valid for common value auctions, and under some specific assumptions 
regarding the correlation between bidders’ valuations. Since then, it has been shown that once one or some of the model’s 
assumptions of the “linkage principle” change the principle fails to hold. For example, Perry and Reny [50] have shown its 
failure when considering multi-unit auctions. As demonstrated throughout our paper, the principle also fails in our hybrid 
model, where bidders’ valuations are not necessarily correlated, making the dominance of the full information disclosure 
strategy setting-dependent.

In some situations, such as the one discussed in this paper, the auctioneer herself does not possess the information 
but rather needs to purchase it from an external source or invest some resources in order to produce it. In such settings 
the auctioneer needs to decide both whether to obtain the information, and if so, what parts of it should be disclosed. 
Alternatively, the auctioneer may allow bidders to assess information about the auctioned item on their own. In the latter 
case the auctioneer cannot verify whether and how bidders exercise this option and therefore any information they reveal 
remains hidden. Such a situation leads to settings where bidders are asymmetrically informed [38]. Works that studied 
common-value settings where bidders are not symmetrically exposed to information reached conclusions for specific mech-
anisms, while for others it was shown that multi-equilibria is possible (with no distinct choice that emerges), resulting in 
a non-conclusive determination of the results. For example, while in the first-price sealed-bid auction it is well known that 
the presence of an informational advantaged bidder will substantially reduce the seller’s benefits [41,63,27], in the second-
price sealed-bid auction there are still many open questions. This is mainly due to Milgrom’s finding of the multiplicity of 
equilibria [39], which makes it difficult to determine which equilibrium bidders will follow. For this multiplicity equilib-
rium problem in environments with asymmetric bidders Selten [53] has proposed the Nash Equilibrium refinement, termed 
the Trembling-Hand Perfect Nash Equilibrium. According to this refinement, in two players game, the Nash equilibrium in 
which one of the players is playing dominated strategy is ruled out. However, with more than two players trembling-hand 
perfectness may get rid of more equilibria in which no player is playing a weakly dominated strategy. Other Nash equilib-
rium refinements were proposed to different asymmetric environments including the techniques of introducing additional 
rational “uninformed” or “random” players [16,1]. The model used in this paper differs from these works in the sense that 
it assumes a symmetric common value and that the asymmetry is between the auctioneer (which is the advantageous in-
formed player) and the bidders. Indeed, in our case the multi-equilibria problem arises, however since the auctioneer is the 
first mover in a sequential game (even if she eventually chooses not to purchase or disclose the information), the multiplic-
ity Nash Equilibrium problem can be resolved by following the principle of a sub-game perfect equilibrium, leading to the 
choice of the Nash equilibrium that is best for the auctioneer [47,33].

Goeree and Offerman [22,23] consider a symmetric-bidders environment, which is similar to ours in the sense that bid-
ders are characterized by both private and (uncertain) common value aspects. The uncertainty associated with the common 
value in their model is attributed both to the bidders and the auctioneer. Their work examines the effect of reducing the 
uncertainty associated with the common value, mostly in terms of reducing its variance, based on equilibrium analysis. 
From the model’s point of view, the main difference between their work and ours is that they consider the case where 
the private and the common value elements are independent and additive and therefore the bidder’s valuation function 
is the sum of the two, whereas our model assumes the bidders’ private valuations to be a general (bidder-dependent) 
function of the common value. Furthermore, their model does not consider the option to purchase external information 
and the question of whether or not bidders are aware of this option, nor the existence of an external self-interested 
information-provider. Therefore, the various aspects and equilibrium dynamics associated with these latter model elements 
are precluded.

Works that do consider the option to obtain external information that can reduce uncertainty usually relate to the 
option of bidders to obtain such information. For example, Bergman et al. [6] consider a setting with independent bidders’ 
valuation of a single unit using Vickrey auction where it is possible for bidders to acquire information that can facilitate the 
assessment of the auctioned item’s worth, prior to the auction stage. For example, consider the scenario where a number 
of established companies bid for the takeover of a certain target company. The bidders are assumed to be symmetrically 
informed but before submitting a bid it is highly expected that each competing company will hire a consulting firm to 
better assess the value of the target company. In their work Bergman et al. analyze the bidder’s private incentives to acquire 
information in such independent value models and establish a comparison between the number of bidders that choose 
to become informed (by buying information) in equilibrium and the number of informed bidders in the socially optimal 
allocation. They find that the number of bidders that decide to buy information is substantially greater than the number 
of bidders that should have bought it in order to achieve the socially optimal allocation. Similar to our use of tax and 
subsidies to allow a social planner to control the social efficiency, Bergman et al. adopt the entry fees as a way that the 
social planner may control the information acquisition by bidders in equilibrium to make it as close as possible to the level 
that is socially efficient. The main difference between this work and ours is in the identity of the player that can obtain the 
external information. In our model it is the auctioneer rather than the bidders that can obtain the additional information. 
Therefore, in our case, one key question is what information will be disclosed, if the information is eventually purchased 
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by the auctioneer and both sides need to model one another’s decisions and beliefs regarding that aspect. Moreover, the 
influence of a self-interested information-provider on the resulting equilibrium was never addressed in these works.

Another relevant work is that of Emek et al. [17], which investigates the scenario of a publisher who sells ad space 
to advertisers using a second-price sealed-bid auction in online advertising markets. The model they use assumes that 
the auctioneer possesses more accurate information than the advertisers (bidders), and the main question is which part 
of the information to disclose to the bidders in order to maximize the publisher’s benefit. The auctioneer in their case 
divides the possible values into segments (disjoint clusters). The division into clusters is given to the bidders a priori, and 
once the true value is known to the auctioneer it only discloses the cluster it belongs to (thus eliminating all others) 
and the bidders place their bids accordingly. Based on the above protocol, the auctioneer needs to decide on the division 
of values into disjoint clusters, i.e., find the expected-benefit-maximizing division. Our work is similar to Emek et al. in 
the sense that both assume: (i) the use of a second-price sealed-bid auction; (ii) the bidders are provided with some 
a priori probability regarding the value of the auctioned item; and (iii) the dependency of the private value on the common 
value. Despite these many similarities, the models and the resulting analysis are very different for the following reasons. 
First, and most important, Emek et al. assume the auctioneer necessarily obtains the information and that the division 
into clusters is always given to the bidders a priori. Furthermore, not disclosing any information (signal) is not allowed. 
This means that their setting can be considered a classic Stackelberg game, as the auctioneer can always calculate the 
resulting second-best bid given the division it uses. Our problem, on the other hand, does not restrict the auctioneer to 
purchasing the information in the first place, and allows not disclosing any value even if the information is purchased. This 
changes the game to a Stackelberg game version with imperfect information of the bidders regarding the leader’s actions 
in cases where no information is disclosed. In particular, bidders cannot distinguish, whenever no information is disclosed, 
between not purchasing the information in the first place and purchasing the information however not disclosing a value. 
Also, since Emek et al. assume that the auctioneer necessarily obtains the information they do not deal with one of the 
inherent questions raised and analyzed in our paper, in addition to what information to disclose, which is whether or 
not to obtain the information in the first place. Moreover, in our model the information source is modeled as an external 
self-interested entity, hence the dynamics resulting from its benefit-maximizing strategy are also taken into considerations 
resulting in issues such as the benefit in not having the option to purchase the information in the first place and the 
individual’s awareness of this option. Second, Emek et al. assume the bidders types are known to the auctioneer, whereas 
we assume these are derived from a distribution of types. Finally, while the work of Emek et al. considers the tradeoff 
between benefit maximization and social welfare, it does not consider external interventions in the form of subsidy and 
taxation.

Two interesting extensions to the work of Emek et al. are the ones given by Miltersen and Sheffet [42] and Dughmi et 
al. [14]. The first extends Emek et al.’s model to the case of mixed signaling scheme, showing that the problem is strongly 
related to a problem of optimally bundling divisible goods for auctioning. The second examines signaling for revenue max-
imization where social, legal, or practical constraints are placed on the auctioneer’s signaling policy (limiting the number 
or nature of signals). Both these works differ from ours in the same way Emek et al.’s model and analysis differ from ours 
(as discussed above).

Based on the review given above, and to the best of our knowledge, an analysis that addresses a model with all of 
the different aspects included in the model analyzed in the current paper, is not provided in existing literature. Many prior 
models do consider a subset of our model characteristics, however as explained above, their results cannot simply be carried 
over to our model in order to point to the equilibrium that is likely to hold.

7. Conclusions and future research

The benefits of selective disclosure of information in mixed auction settings have been well established in prior works, 
as discussed in the previous section. The current paper considers the problem in a richer setting, where the availability 
of the information to the auctioneer is not trivial, but rather the auctioneer needs to decide whether or not she is inter-
ested in purchasing it. Bidders’ awareness of the situation complicates the analysis in this case, as it requires the solution 
to be stable. The analysis given in the paper unfolds the equilibrium structure for such a model and facilitates its calcu-
lation for any setting. In particular, it shows how the problem of the auctioneer or the social planner can be simplified 
whenever having to reason about the equilibrium, which is likely to hold for any potential price set by the information 
provider.

The equilibrium-based analysis also facilitates the illustration of several interesting and often somewhat surprising prop-
erties of the model, related to the effect of the different model parameters over the auctioneer’s expected-benefit in 
equilibrium. Some of them are in contrast to those characterizing traditional auction models (e.g., having more bidders 
participate in the auction is not necessarily in the auctioneer’s best interest, and having less bidders is not necessarily in 
the bidders’ best interest; having the option to purchase the information (at all or at a reduced price) can actually result in 
a degradation in the auctioneer’s expected benefit). These results are attributed to the stability requirement – despite the 
superiority of the situation for the auctioneer (e.g., with the reduced cost of information, the greater number of bidders), 
the auctioneer’s preferable solution cannot hold since the bidders know that if they act according to it, there is an incentive 
for the auctioneer to deviate.
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As for bidders’ awareness of the auctioneer’s option to purchase the information, the paper demonstrates that such 
knowledge is not always beneficial in our setting: the auctioneer can potentially benefit from bidders’ awareness, and 
bidders can benefit from being unaware. This, once again, is attributed to the stability constraint – becoming aware or 
unaware may lead to a different equilibrium solution, which might turn out to be more beneficial to any of the parties 
despite the loss due to bidders’ awareness (for the auctioneer) or unawareness (for the bidders). Similarly, the option 
to purchase the information can have a substantial downside, and indeed the paper demonstrates situations where the 
existence of such an option leads to a degradation in the auctioneer’s expected benefit. The interest in such a result is 
because seemingly it is the auctioneer’s choice of whether to obtain the information or not. The explanation of this result 
is that once the bidders become strategic players, the auctioneer does not really have the flexibility of choosing whether 
or not to obtain the information. Instead, the choice of obtaining the information derives from stability considerations. One 
important implication of the above is that the auctioneer may find it beneficial to pay the information-provider to leave the 
market or not disclose her existence. Another implication is that a self-interested information-provider may find it beneficial 
not to publish her existence but rather contact the auctioneer and offer her services discretely.

Finally, the paper shows that in our unique setting, it might be beneficial for the auctioneer to pay an external 
information-provider in order to change the price she sets for the information (without leaving the market). Similarly, 
we demonstrate how a social planner can improve social welfare through subsidy and taxation. Both means are effective. In 
particular, in the case of a tax, the paper uses a strict assumption whereby the proceeds of the taxes are not re-distributed 
and thus the tax is taken into account as part of the social welfare only in the form of the tax payment that the auctioneer 
needs to pay.

We note that our model allows only the auctioneer to purchase the external information related to the common value. 
While this is applicable to many settings, for the justifications given in Section 2, there are situations where the auctioneer 
and bidders are symmetric in their ability to obtain the common value. Therefore, an important direction for future research 
is the modeling and analysis of settings where both the auctioneer and the bidders can purchase the external information. 
The analysis of such environments is likely to involve several aspects of coalition formation and cooperation among self-
interested agents, as the bidders may find it beneficial to cooperate in obtaining the information (either for the purpose of 
reducing the cost each incurs or as a means of placing pressure on the auctioneer to obtain and disclose it). The stability 
in this case will need to be tested also for the bidder coalitions that will be formed. Furthermore, the auctioneer may find 
it beneficial in some cases to split the cost of obtaining the information with the bidders in exchange for committing to 
disclose the information. Another natural extension of this work is the analysis of mixed settings where only some of the 
bidders are aware of the fact that the auctioneer may purchase accurate information on the common value.
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Appendix A. Using continuous distribution functions

The continuous case demands some minor changes in the formulation given in the analysis section. When the distribu-
tion of X is continuous, the set Rbidder is a collection of intervals rather than discrete values, and the bid of a bidder of 
type t when no value is revealed is calculated as:

B(t,∅) =
∫

x/∈Rbidder

Vt(x) f ∗
x (x)dx (14)

where f ∗
x (x) is the posterior probability distribution function, calculated as:

f ∗
x (x) =

⎧⎨
⎩

0 if x ∈ Rbidder

fx(x)∫
y /∈Rbidder fx(y)dy

if x /∈ Rbidder (15)

The calculation of the expected benefit of bidders of type t , weighing the expected benefit for each value that X may 
obtain according to its occurrence probability, is much simpler compared to the discrete case, as we do not need to concern 
cases where there is more than one bidder placing the same highest bid:

ubidder(t) =
∫

x∈Rauc

[
fx(x)

( ∫
B(t′,x)<B(t,x)

(n − 1) fx
(
t′)dt′

·
∫

′′ ′
ft
(
t′′)n−2(

Vt(x) − B
(
t′, x

))
dt′′

)]
dx
B(t ,x)≤B(t ,x)
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+
∫

x/∈Rauc

[
fx(x)

( ∫
B(t′,∅)<B(t,∅)

(n − 1) fx
(
t′)dt′

·
∫

B(t′′,∅)≤B(t′,∅)

ft
(
t′′)n−2

(∫
y /∈Rauc Vt(y)Pr(X = y)dy∫

y /∈Rauc Pr(X = y)dy
− B

(
t′,∅))

dt′′
)]

dx (16)

and the expected benefit of a random bidder is given by: ubidders = ∫
t∈T ft(t)ubidder(t)dt .

The auctioneer’s expect benefit from the auction in the continuous case is thus:

uauc(X = x) =
∫
y

n(n − 1)
(
G(y, x)

)n−2(
1 − G(y, x)

)
g(y, x)ydy (17)

where g(w, x) and G(w, x) are given by:

G(w, x) =
∫

B(t,x)≤w

ft(t)dt; g(w, x) = dG(w, x)

dw
(18)

Similarly, u(Rauc, Rbidder) can be calculated in this case using:

u
(

Rauc, Rbidder) =
∫

x∈Rauc

fx(x) · uauc(x)dx +
∫

x/∈Rauc

fx(x) · uauc(∅)dx (19)
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